Observational tests of an inhomogeneous cosmology

PhD defence

Christoph Saulder

March 24 2016

Department of Astrophysics
University of Vienna
Advisers and Collaborators

Steffen Mieske
ESO Chile

Werner W. Zeilinger
University of Vienna

Eelco van Kampen
ESO Garching

Igor Chillingarian
Harvard-Smithsonian CfA

Christoph Saulder
University of Vienna

Remco van den Bosch
MPIA Heidelberg
Λ-CDM cosmology

Based on the following assumptions:

- General Relativity (including a cosmological constant)
- Homogeneity
- Isotropy

→ Friedmann-Lemaître-Robertson-Walker metric

→ Friedmann equations

Cosmological Principle
\[
\frac{H^2}{H_0^2} = \Omega_\gamma a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_\Lambda
\]

- **Best fit**
 (based on Planck data)

- The present-day universe is dominated by **Dark Energy**
Timescape cosmology

- Based on the following assumptions:
 - General Relativity (without a cosmological constant)
 - Swiss cheese-like matter distribution
 - No universal cosmological time parameter
 - Modified averaging over inhomogeneities to non-linearities from General Relativity
 - Significant backreaction from local inhomogeneities (voids and walls)
• Two-phase models:
 – **Voids**: empty, locally open geometry
 – **Walls**: on average renormalized critical density, locally flat geometry

\[
\left(\frac{\dot{a}}{a}\right)^2 + \frac{\dot{f}_V^2}{9 f_V(1-f_V)} - \frac{\alpha^2 f_V^{1/3}(1-f_V)}{a^2} = \frac{8\pi G}{3} \bar{\rho}_0 \frac{\dot{a}_0^3}{a^3}
\]

\[
\ddot{f}_V + \frac{\dot{f}_V^2(2f_V-1)}{2f_V(1-f_V)} + 3 \frac{\dot{a}}{a} \dot{f}_V - \frac{3 \alpha^2 f_V^{1/3}(1-f_V)}{2a^2} = 0
\]

• Finite infinity regions (Ellis 1984)
• Structure formation made the universe inhomogeneous

• Time flows faster in voids than in walls

• → voids expand faster than walls

Apparent accelerated expansion without Dark Energy
• Nice theory, isn't it?

BUT

• Are these back-reactions strong enough to explain the cosmic acceleration?

• Exact calculations (beyond two-phase models) are difficult due to the complexity of the equations of General Relativity

• Estimates are ranging from negligible to extremely important (Marra+ 2010, Mattsson+ 2010, Kwan+ 2009, Clarkson+ 2009, Paranjape 2009, van den Hoogen 2010)

Only a test can provide an answer!
Designing the test

- Direct measurement of different expansion rates of voids and walls (Schwarz 2010, Wiltshire 2011)
- Only be measurable in the local universe (Schwarz 2010)
- Large sample required to get solid statistics (Saulder+ 2012)
• Sample with large sky-coverage, sufficient depth and redshift data: **SDSS**

• Redshift-independent distance indicator: **fundamental plane** of elliptical galaxies

• Model of the matter distribution in the local universe: **SDSS** supplemented by **2MRS**

• Numerical simulations for mock catalogues: **Millennium simulation**
Calibrating the fundamental plane

- Empirical relation for elliptical galaxies
 \[\log_{10}(R_0) = a \cdot \log_{10}(\sigma_0) + b \cdot \log_{10}(I_0) + c \]

- 3 parameters: scale radius \(R_0 \), central velocity dispersion \(\sigma_0 \) (redshift independent), and the surface brightness (redshift independent) \(\mu_0 = -2.5 \cdot \log_{10}(I_0) \)

- Redshift-independent distance indicator

- Identifying elliptical galaxies in SDSS using GalaxyZoo (Linott+ 2008, 2011)
• Largest sample ever (119,085 galaxies from SDSS) to fit the fundamental plane (Saulder+2013, Saulder+2015a)

• 18.5% distance accuracy for individual galaxies
Group catalogue

- Model of the local universe

- **SDSS DR12 data + 2MRS data** (to compensate for the saturation bias of SDSS spectroscopy)

- Calibrated (using mock catalogues based on the Millennium simulation) and applied a **modified FoF-algorithm** based on Robotham+ 2011

- Special attention to the completeness and accuracy of group masses
- Also further improve the redshift independent distance measurements

- Four catalogues published in Saulder+ 2015b:
 - SDSS group catalogue
 - 2MRS group catalogue
 - SDSS based *fundamental plane distance group catalogue* (using the SDSS group catalogue and the fundamental plane data from Saulder+ 2015a)
 - Catalogue of finite infinity regions derived from a combination of the SDSS and 2MRS group catalogue
Modelling finite infinity regions

- Merging SDSS and 2MRS group catalogues

- Rescale masses

- Using the group masses to assign spherical regions with an on average re-normalized critical density.

- Iteratively merging enclosed groups
Mock catalogues

- Consider potential biases, such as coherent infall
- Millennium simulation
- Baseline for comparison to observational data
For both models (Λ-CDM and timescape):
- For groups and finite infinite regions: same mock catalogues as for the group finder calibration
- Identifying early-type galaxies in the simulated data and introducing scatter of the fundamental plane

For timescape cosmology only:
- Using the complete (unbiased) DM-halo information
- Introducing different Hubble expansion rates of voids and walls by modifying observed redshift depending on the line of sight matter distribution

Issues:
- Dearth of rich groups in the Millennium simulation
- Artificial introduction of timescape cosmology not ideal
Performing the test

- Calculate “relative individual Hubble parameters”:
 - Fundamental plane distances to galaxy groups (z<0.1)
 - Media redshifts of galaxy groups
 - Normalization for comparability

- Calculate “fraction of the line of sight within finite infinity regions”:
 - Model of finite infinity regions (z<0.11)
 - Line of sight to galaxy groups intersecting them

- For observational data and all mock catalogues
Statistical Analysis

- We have:
 - Observational data (covering about 23% of the sky ... almost ¼ of the sky)
 - 8 mock catalogues using Λ-CDM cosmology (each covering ⅛ of the sky)
 - 8 mock catalogues using timescape cosmology (each covering ⅛ of the sky)

- For comparability: all 64 (36 unique) combinations of two mock catalogues (of the same cosmology) → ¼ sky coverage
- High variability between the combined mock catalogues of the same cosmology ($\sigma_k = 0.10/0.11$ vs. $(k_{\Lambda-CDM} - k_{\text{ts}})_\Lambda = 0.15$)

- Large scatter in the relative individual Hubble parameters
 → uncertainty in fundamental plane distances
- Observational data \rightarrow close to Λ-CDM
Introduce additional selection criteria:

- Distance limit: \(~326\ \text{Mpc}/h\ (\Delta \text{redshift } 0.1)\)
- At least 3 early-type galaxies per group

Scatter reduced \(\sigma_k = 0.06/0.07\), but also number of groups
Observational data → timescape is 3-σ outlier
• Binned analysis: less clear, but preferences for Λ-CDM over timescape

• Fits on binned data yield similar results as direct fits

• Kolmogorov-Smirnov test: p-values are very low, but are higher for Λ-CDM than timescape cosmology
Open issues

- Dearth of rich groups in the Millennium simulation
- Cosmological parameters of the Millennium simulation are slightly dated
- No fully self-consistent numerical simulation using timescape cosmology
- Finite infinity regions are only approximated
- Possible systematic effects from using the fundamental plane (Joachimi+ 2015, Saulder+ 2015b)
Conclusions

- A meaningful test for timescape cosmology against Λ-CDM cosmology with public survey data and simulated data only (Saulder+ in prep.)

- Many useful products along the way
 - Fundamental plane calibrations (Saulder+ 2013)
 - List of compact high velocity dispersion early-type galaxies (Saulder+ 2015a)
 - SDSS and 2MRS group catalogues (Saulder+ 2015b)
 - Future work on peculiar motions is planned
• Good agreement of observational data with Λ-CDM simulated data

• Observations significantly deviate from our models based on timescape cosmology

• All statistical tests clearly favour Λ-CDM cosmology ($P_{\text{linreg}} = 0.430$) over timescape cosmology ($P_{\text{linreg}} = 0.002$)

• Inhomogeneities cannot explain the accelerated expansion of the universe without dark energy
Outlook

- Deeper surveys will not improve the test

- However, a larger sky coverage could improve it: 6dFGS, ATLAS, ...
• Other distances indicator (Tully-Fischer relation, supernovae Typ Ia, …)

• Better numerical simulations

Why bother to further improve?

• Other models of inhomogeneous cosmology (Clarkson+ 2012/14, Umeh+ 2014a,b)

• Potential (smaller) impact on cosmological parameters (observational upper limit needed)

• Magnitude still disputed (Kaiser&Peacock 2015)
ANY QUESTIONS?
Additional slides
Comparison of parameters

Timescape cosmology

- $H_0 = \sim 61.7$ (void) / ~ 48.2 (wall) km/s/Mpc
- age = ~ 14.7 Gyr (wall)
- $f_V = 0.76$
- $\Omega_b / \Omega_M = \sim 3.1$
- from Leith+ 2007

Λ-CDM cosmology

- $H_0 = \sim 67.8$ km/s/Mpc
- age = ~ 13.8 Gyr
- $\Omega_{\Lambda} = 0.69$
- $\Omega_b / \Omega_M = \sim 5.4$
- from Planck XIII 2015
Identification of early-type galaxies in the Millennium simulation
Fundamental plane biases
Binned analysis

- Sensitive to normalization
- Larger scatter in outer bins
Merging of SDSS and 2MRS

- Weighting parameters of merged groups by the completeness function

![Graph showing the completeness of 2MRS and SDSS as a function of comoving distance. The graph compares 2MRS completeness, SDSS completeness, SDSS saturation completeness, and SDSS Malmquist bias completeness.]
Algorithm to derive finite infinity regions
Observed/simulated distribution of galaxies
Calculate/use dark matter halos (FoF groups)
There is also dark matter outside the halos and unbound in the halos.
Assign finite infinity regions using the calibrations from Millimil
Iteratively merging enclosed finite infinity regions
FoF group finder
“real” galaxy distribution (e.g. from Mock catalogues)
FOF groups

distance -->
move to redshift space – peculiar motions
redshift space – observed distribution
Comparison with “real” distribution
Quality analysis – false positive / false negative
Compact massive ETG

- High σ_0 and small R_0 galaxies similar to b19
- b19 is not a fundamental plane outlier
• Evolved from red nuggets from the early universe
Other tests for timescape cosmology

- H(z) measure
- Om(z) dependence
- Alcock–Paczynski test (proper length and BAO)
- Inhomogeneity test based on H(z) and D(z)
- Time drift in Lyman-α forest
- Effective ω Equation of state
N/A

Sorry,

but I haven't prepared a slide for this question.