Heating up galaxies in the cold of space

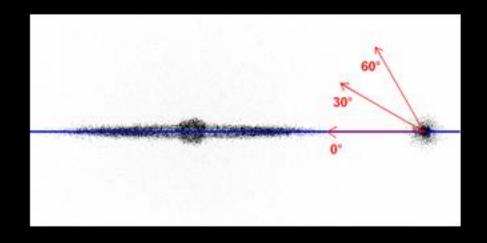
Minor Mergers

By Christoph Saulder
Institute of Astronomy, University of Vienna

Content of this talk

- Initial model
- Simulations
- Merging times
- Heating of the disc
- Remnants of the dwarf galaxy
- Conclusion

Initial Model


Stellar dynamics only

 Disc galaxy: Kuijken-Dubinski A-model consisting of 180000 particles (80000 disc, 40000 bulge, 60000 halo) with a total mass of 1.9 10¹¹ solar masses

 Dwarf galaxy: King-Model consisting of 10000 particles Initial distance: 40 kpc

Initial velocity = circular velocity = 162 km/s

Different directions of relative velocity of the dwarf galaxy: inclination 0°, 30° and 60°

Different mass ratios of dwarf galaxy and disc galaxy: 1/10, 1/25, 1/50, 1/100 and 1/200

yellow = disc red = bulge blue = halo green = dwarf Acc 1 - 07, 007 Acr 1 - 05, 00 0, 00 0, 00 Acr 1 - 05, 00 0, 00 0, 00 Acr 1 - 05, 00 0, 00 0, 00 Acr 1 - 05, 00 0, 00 0, 00

tedy: 100000

ded ton

March \$1.7e

See 4 0,0000 Body: 190000 minte . st

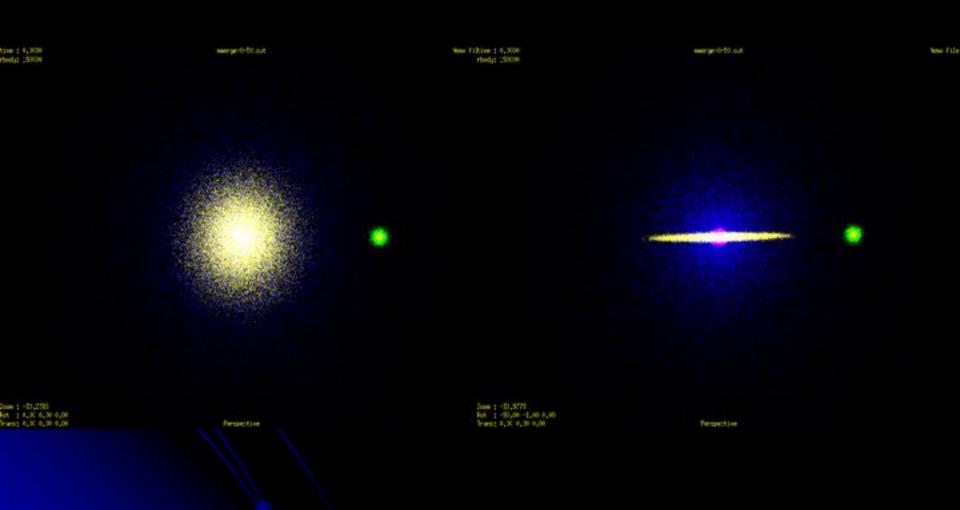
Trans 1 145,5744 Ret 1 0,00 0,00 0,00 Trans 0,00 0,00 0,00

Simulations

using NEMO-package by P.J. Teuben

Stellar dynamical N-body simulation

gyrfalcON tree-code for numerical integration


ran 15 simulations with different initial conditions

 Integration time 2 Gyr (in case merger was not finished extended up to 8 Gyr)

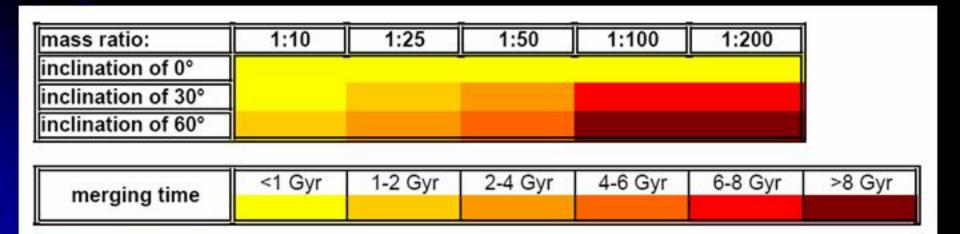
mass fraction = 1:10; inclination = 30°

mass fraction = 1:50; inclination = 0°

mass fraction = 1:200; inclination = 60°

tine : 0,0000 Veno file mmerge-60-200 aut

rbody: 190000


Zoom : -33,3973

Fot : -90,00 0,00 0,00 Trans: 0,00 0,00 0,00

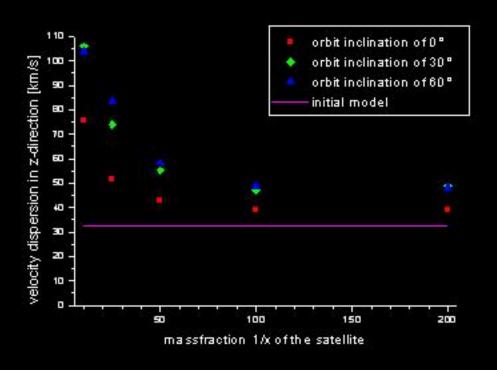
Merging Times

- Measured 'visually'
- Increases with inclination of the dwarf's orbit

Decreases with the mass of dwarf

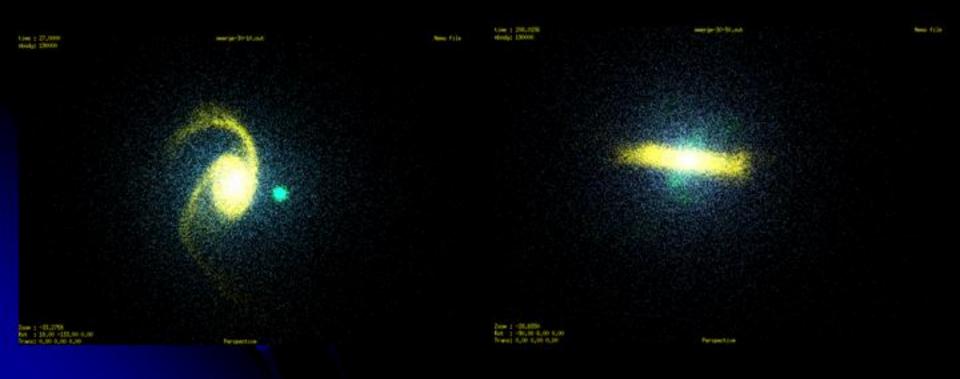
Heating of the disc

Dwarf galaxy on polar orbit


force normal to the galactic plane

distortion of star in disc

Increases vertical velocity distribution


Galactic disc gets thicker/hotter

- Heating measured by the z-component of the velocity distribution of the disc particles
- Heating strongly depends on mass of the dwarf
- Little dependence on inclination of inclined orbit
- Only small effect if central collision because no additional force normal to disc

 Visible features of interaction stronger with higher mass of dwarf galaxy

 For high mass dwarfs: significant transition of the disc galaxy's morphology

Remnants of the dwarf galaxy

The core of the dwarf settles in the bulge

 Tidal arms remain some time after merging process is finished

 Each orbit of the dwarf is visible but contrast will be to small

Conclusions

 Merging time of minor mergers decreases with the mass of the dwarf but increases with the inclination of the dwarf's orbit

- Heating of the galactic disc depends on the dwarf's mass but hardly on its orbit
- The visible effect on the structure of the host galaxy is stronger with a higher mass of satellite galaxy
- Core of dwarfs settles in bulge of disc galaxy