<u>Elektrische und magnetische Eigenschaften von</u> <u>Stoffen</u>

Theorie

Das Magnetische Feld

Das magnetische Feld ist ein klassisches Beispiel für ein nichtkonservatives Kraftfeld. Mathematisch ausgedrückt bedeutet dies, dass die Rotation dieses Kraftfeldes nicht Null ist, sondern

(1)
$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} + \frac{\partial \vec{D}}{\partial t}$$

ergibt. B steht hier für das magnetische Feld, genauer gesagt die magnetische Flussdichte, μ_0 für die magnetische Feldkonstante, j für die Stromdichte und der zweite Term steht für den Maxwellschen Verschiebungsstrom.

Physikalisch gesehen bedeutet das Nichtverschwinden der Rotation der magnetischen Flussdichte, dass das magnetische Feld ein Wirbelfeld ist und somit die, in diesem Feld geleistete, Arbeit vom gewählten Weg abhängt.

Wie entsteht nun Magnetismus?

Magnetismus kann im Allgemeinen auf zwei Ursachen zurückgeführt werden:

- 1. Erzeugung eines magnetischen Feldes um einen stromdurchflossenen Leiter, oder
- 2. Das Magnetfeld eines Permanentmagneten (Magnetisiertes "Material")

Von **Magnetisierung** spricht man, wenn Materie einen magnetischen Nord- und Südpol, d.h. ein magnetisches Dipolmoment besitzt. Genauer gesagt, ob ein Material nun magnetisch ist oder nicht, hängt davon ab, ob die einzelnen, magnetischen Dipolmomente im jeweiligen Molekülverband, bestimmt durch die Protonen und Elektronen, sich nicht kompensieren. Dies liegt vor, wenn die magnetischen Dipolmomente zufällig und unregelmäßig angeordnet sind.

Stärke des Magnetfeldes

Die Stärke H eines Magnetfeldes wird, wie sich aus der obigen Formel schon erahnen lässt, durch die magnetische Induktion bzw. magnetische Flussdichte B beschrieben, sie beträgt im Vakuum

(2)
$$\overline{B_0} = \mu_0 \overline{H}$$

In Materie sieht dies jedoch anders aus, da die magnetischen Momente der Elektronen und des Atomkerns, also der Elektronen-, bzw. Kernspin mit dem Feld wechselwirken und dieser Stoff somit eine Magnetisierung J erfährt. Somit ändert sich auch die Stärke des Magnetfeldes, sie ergibt sich durch vektorielle Addition von Magnetisierung J und äußerem Feld H

(3)
$$\overline{\mathbf{B}_{\mathrm{m}}} = \boldsymbol{\mu}_0 \cdot (\overline{\mathbf{H}} + \overline{\mathbf{J}})$$

wobei

(4)
$$\vec{J} = \kappa \cdot \vec{H}$$

Die dimensionslose Stoffkonstante κ , die **magnetische Suszeptibilität** drückt den Grad der magnetischen Ausrichtung im Magnetfeld aus.

(4) in (3) eingesetzt ergibt

(5)
$$\overline{\mathbf{B}_{m}} = \boldsymbol{\mu}_{0} \cdot (\mathbf{1} + \boldsymbol{\kappa}) \cdot \overline{\mathbf{H}} = \boldsymbol{\mu}_{0} \cdot \boldsymbol{\mu}_{r} \cdot \overline{\mathbf{H}}$$

Hier steht μ_r für die relative Permeabilität (bzw. Permeabilitätszahl) des Stoffes. Je nachdem, wie groß die Suszeptibilität eines Stoffes ist, so lässt er sich in verschiedene "Arten" von Magnetismus einteilen.

Arten von Magnetismus

Diamagnetismus

In diamagnetischen Stoffen wird das Magnetfeld geschwächt, κ ist negativ (-10⁻⁹ < κ < -10⁻⁴). Diamagnetische Stoffe haben im Allgemeinen das Bestreben, das Magnetfeld aus ihrem Innern zu verdrängen. Sie magnetisieren sich gegen die Richtung eines externen Magnetfeldes. Diamagnetische Beiträge sind im Allgemeinen temperaturunabhängig und ergeben sich nach dem Prinzip der Lenzschen Regel. Sie sind damit in allen Materialien vorhanden, wenn auch meist nicht dominant. Deutlich diamagnetisches Verhalten zeigen vor allem Materialien mit abgeschlossenen Elektronenschalen (Ag, H₂O, Cu etc.). Einen Sonderfall stellen die Supraleiter dar. Sie verhalten sich im konstanten Magnetfeld als ideale Diamagneten mit $\kappa = -1$.

Paramagnetismus

In paramagnetischen Stoffen richten sich die atomaren magnetischen Momente nach dem äußeren Magnetfeld aus und verstärken dieses somit, die Suszeptibilität ist positiv ($10^{-6} < \kappa < 10^{-3}$). Diese ist allerdings temperaturabhängig, was durch das **Curiesche Gesetz** beschrieben wird:

(6)
$$\kappa = \frac{J_0 \mu_B}{k_B T} = \frac{C}{T}$$

T ist die Temperatur in Kelvin, J für die Magnetisierung, k_B für die Boltzmann-Konstante und μ_B für das Bohr'sche Magneton eines Elektrons.

Der Ausrichtungsgrad bleibt aber im Allgemeinen durch die thermische Bewegung der Atome klein und nimmt mit steigender Temperatur ab. Beispiele für Paramagnetismus sind Al, O₂, Pt.

Ferromagnetismus

Ferromagnetische Stoffe verstärken das magnetische Feld im Allgemeinen wesentlich, die Suszepibilität reicht von $\kappa = 0,3$ bis $\kappa = 10^9$. Ihre Atome besitzen unaufgefüllte innere Elektronenschalen. Die wichtigsten Ferromagnetischen Stoffe sind Fe, Co und Ni, sowie Legierungen mit diesen drei Stoffen. Die Temperaturabhängigkeit von Ferromagnetika wird durch das **Curie-Weiss Gesetz** beschrieben:

(7)
$$\kappa = \frac{C}{T - T_c}$$

Tc wird auch die **Curie-Temperatur** genannt. Oberhalb dieser Temperatur verhalten sich alle Ferromagnetika sowie die als nächstes, kurz erwähnten Ferrimagnetika wie paramagnetische Stoffe.

Ferrimagnetika

Diese Stoffe besitzen auch eine relativ große Suszeptibilität und Sättigungsmagnetisierung, aber nicht so groß wie ferromagnetische Stoffe.

Magnetische Domänen, Weiss'sche Bezirke

Ohne äußeres Magnetfeld kann es durch **spontane Magnetisierung** (genaue Beschreibung nur mit Hilfe der Quantentheorie) geschehen, dass sich in begrenzten Bereichen, in der Größenordnung von 10µm bis 1mm, die Elektronenspins parallel ausrichten. Diese Bereiche nennt man Weiss'sche Bezirke, ihre Abgrenzungen werden **Blochwände** genannt.

Abbildung 1: Weiss'sche Bezirke und Blochwände; die Pfeile stehen für die Orientierung des jeweiligen Bezirkes

Makroskopisch gesehen sind Ferromagnetika magnetisch neutral.

Magnetisierung durch ein äußeres Magnetfeld

Wirkt ein äußeres Magnetfeld auf, makroskopisch gesehen, unmagnetische Materie, so beginnen sich die magnetischen Momente des Stoffes auszurichten. Die dabei ablaufenden Prozesse bestimmen die Abhängigkeit der Flussdichte B von der Feldstärke H bei erstmaliger Magnetisierung, was durch die **Neukurve** wiedergegeben wird:

Abbildung 2: Neukurve B = f(H) bei Magnetisierung

Hierbei werden 3 Bereiche unterschieden:

1. Bereich: reversible Wandverschiebungen

Die Spins orientieren sich nach der Richtung, die den kleinsten Winkel mit dem äußeren Magnetfeld einschließt (Vorzugsrichtung). Die Weiß'schen Bezirke parallel zu diesen Richtungen werden größer.

2. Bereich: irreversible Wandverschiebungen

Zwischen Antiparallel orientierten Weiß'schen Bezirken beginnen Verschiebungen der Blochwände. Diese verlaufen im ganzen Stoff nicht gleichmäßig, was auf innere Spannungen, Kristallfehler, Korngrenzen etc. zurückzuführen ist. Ab einer gewissen Feldstärke können diese Hindernisse überwunden werden, sodass die magnetische Induktion sprunghaft ansteigt, dies wird dann als **Barkhausen-Sprung** bezeichnet.

3. Bereich: Drehprozesse

Bei hohen Feldstärken schließlich werden auch diejenigen Weiß'schen Bezirke in die Vorzugsrichtung gedreht, welche vorher in die Richtung zeigten, die sie bei der spontanen Magnetisierung eingenommen haben. Dieser Prozess verbraucht allerdings viel Energie, weshalb die Neukurve nur recht flach ansteigt. Bei einer **Sättigungsfeldstärke H**_s sind alle Momente ausgerichtet und die **Sättigungsflussdichte B**_s ist erreicht, ab diesem Zeitpunkt nimmt die Flussdichte mit der Feldstärke nur noch schwach, aber stetig, zu.

Entsprechend diesem nichtlinearen Verlauf ist auch die relative Permeabilität von der Feldstärke abhängig. Bei para-, und diamagnetischen Stoffen ist dieser Verlauf allerdings linear.

Hystereseschleife

Abbildung 3: Beispiel einer Hystereseschleife

Die irreversiblen Magnetisierungsprozesse bewirken, dass, wenn man nach dem Erreichen der Sättigungsflussdichte das äußere Magnetfeld abdreht, sich der weitere Verlauf nicht mit der Neukurve deckt. Ist das äußere Magnetfeld abgedreht, bleibt ein gewisser Restmagnetismus vorhanden, welcher durch die **Remanenz B**_r beschrieben wird. Die Feldstärke, welche man benötigt, um die Remanenz verschwinden zu lassen, wird als **Koerzitivfeldstärke H**_c bezeichnet.

Die von der Hysteresekurve eingeschlossene Fläche ist ein Maß für die Ummagnetisierungsarbeit pro Volumselement und Zyklus. Je breiter diese Kurve, umso schwieriger gestaltet sich dieser Prozess. Für den Kern einer stromdurchflossenen Spule ist diese Arbeit während eines Zyklus gegeben durch

(8)
$$\mathbf{W} = \mathbf{V} \oint \mathbf{H} \cdot \mathbf{dB}$$

Wobei V das Kernvolumen ist. Verwendet man ein Wechselfeld mit veränderbarer Amplitude, so erhält man eine Schar von Kurven, deren Spitzen auf der Neukurve liegen:

Abbildung 4: Hysterese Schleifen bei unterschiedlichen Amplituden in einem Wechselfeld

Weichmagnetika und Hartmagnetika

Weichmagnetika

Magnetisch weiche Stoffe zeichnen sich durch geringe Ummagnetisierungsverluste und einer großen Permeabilitätszahl aus. Beispielweise erreicht die Legierung FeNi₃ einen μ_m -Wert von 2,5 10⁵. Grund für diese Eigenschaften ist der geringe Energieaufwand, welcher zu Bewegung der Blochwände nötig ist. Hierzu sind zwei Eigenschaften nützlich: Der weichmagnetische Stoff sollte ein möglichst reines und homogenes Material mit möglichst wenigen

Kristallfehlern sein um so der Bewegung der Blochwände keine entgegenwirkenden Hindernisse in den Weg zu stellen. Diese Zustände sind durch ein schnelles und gleichmäßiges Auskühlen des Materials zu erreichen. Die Minimierung der Kristallanisotropie ist ein weiteres Kriterium für ein magnetisch weiches Material. Weichmagnetische Stoffe finden Anwendungen in Transformatoren, Motoren, Generatoren und Relais.

Hartmagnetika

Harte Magnete haben eine hohe Remanzinduktion und eine hohe Koerzitivkraft. Hierzu sind genau gegenteilig zu Weichmagnetikern starke innere Spannungen und eine hohe Kristallanisotropie nötig. Um magnetisch harte Stoffe zu erzeugen, schaltet man beim Auskühlen starke Magnetfelder ein und wählt Legierungen, welche sich durch eine hohe magnetische Anisotropie auszeichnen. Die Koerzitivfeldstärken von Hartmagnetika liegen im Bereich 10 bis 500000 Am⁻¹. Verwendet werden magnetisch harte Stoffe bei Lautsprechern, Gleichstrommotoren, Videobändern, Magnetspeichern in Computern und in Fernröhren.

Abb.5: Übersicht über magnetische harte und weiche Materialien

Magnetische Verluste in Spulen

Eine verlustfreie Spule besitzt einen komplexen Widerstand (Impedanz):

(9)
$$\mathbf{R}_{\mathrm{L}} = \mathbf{i} \cdot \boldsymbol{\omega} \cdot \mathbf{L}$$

L steht für die Induktivität der Spule, ω für die Kreisfrequenz. Diese Impedanz bewirkt, dass Strom und Spannung Phasenverschoben sind und die Spannung dem Strom um $\pi/2$ vorauseilt; durch die Spule fließt ein reiner Blindstrom. Dies gilt allerdings nur bei einer "idealen" Spule. Reale Spulen haben selbst auch einen Ohm'schen Widerstand, was zu einer Phasenverschiebung kleiner als $\pi/2$ führt, was einen Wirkstrom bewirkt, welcher wiederum zu einer Erwärmung des Kernes führt.

Diese Verlustleistung bestimmt je nach Ursache das Verhalten der Spule; abgesehen vom Ohm'schen Widerstand der Spule sind **Nachwirkungsverluste**, **Hystereseverluste** und **Wirbelstromverluste frequenzabhängig.**

Nachwirkungsverluste

Eine Änderung der Feldstärke H hat nicht zwangsweise eine sofortige Änderung der Flussdichte B zur Folge. Dies kann thermisch bedingte Verzögerungen der Drehprozesse, Verunreinigungen im Kristallgitter etc. zur Ursache haben. Bei höheren Flussdichten sind diese zu vernachlässigen

Hystereseverluste

Beim Ummagnetisieren des Kernmaterials müssen die Weiß'schen Bezirke immer wieder neu ausgerichtet werden. Diese Verluste sind umso größer, je öfter die Schleife durchlaufen wird, sie sind also der Frequenz direkt proportional.

Wirbelstromverluste

Wirbelströme entstehen, wenn sich ein Metall in einem Magnetfeld bewegt oder aber, wie in unserem Fall, sich dieses Metall in einem zeitlich veränderlichen Magnetfeld befindet. Diese Wirbelströme sind in sich geschlossen und erzeugen nach der Lenz'schen Regel ein der Ursache entgegenwirkendes Magnetfeld.

Durchführung

Es werden magnetische Hystereseschleifen mittels eines Oszilloskopes im Zweikanalbetrieb ausgemessen. Hierzu wird an der Primärspule eines Transformators die Spannung U_x gemessen und an der Sekundärspule des Transformators die Spannung U_y . Beide Messgrößen sind proportional zu den eigentlich gesuchten Parametern H (magnetisierende Feldstärke) und B_m (Induktion), dessen Zusammenhang hier untersucht wird. Es gelten hierfür folgenden Formeln:

(10)
$$H = \frac{n_1 \cdot U_X}{L \cdot R_V}$$
$$(11) B_m = \frac{R \cdot C}{n_2 \cdot A} U_Y$$

Hierbei ist R_V der Vorwiderstand, L die Länge der Spule, n_1 die Windungszahl der Primärspule sowie n_2 die Windungszahl der Sekundärspule, A die Querschnittsfläche des Kerns, C die Kapazität des Kondensators des Integriergliedes und R der ohmsche Widerstand desselben.

Abb.6: Schaltskizze der Versuchsanordnung

Messung A

Die Hystereseschleifen der beiden Kerne F und W sind bei einer Frequenz von 50Hz aufzunehmen. Aus den gewonnen Daten sind dann die Koerzitivfeldstärke, die Remanenz und die Magnetisierungsarbeit pro Volumeneinheit und Zyklus zu bestimmen. Hierzu ist das Eingangssignal so einzustellen, dass es für den Kern W einen primären Magnetisierungsstrom von 300mA bzw. für den Kern W 50mA ergibt. Die Spannungen U_X und U_Y werden dann am Oszilloskop angezeigt. Die Einstellungen sind hierbei so zu wählen, dass man ein möglichst großes, zum Bildschirmmittelpunkt symmetrisches Bild der Hystereseschleife erhält. Für die Messungen und Auswertung wird das Programm PS12 herangezogen. Mit den Formeln, welche den Zusammenhang zwischen U_X und H bzw. U_Y und B beschreiben, ist nun eine geeignete Skalierung zu wählen. Damit kann man die Koerzitivfeldstärke und die remanente Flussdichte direkt ablesen, weiters kann man aus der, von der Hystereseschleife umschlossenen, Fläche die Magnetisierungsenergie pro Volumeneinheit und Zyklus ermitteln.

Messung B

Hier ist die Neukurve zu messen, die Anfangspermeabilität, die maximale Permeabilität und die Abhängigkeit der Permeabilität von der magnetischen Feldstärke zu bestimmen. Die Neukurve ergibt sich aus den Spitzen der Hystereseschleifen bei unterschiedlichem Magnetisierungsstrom; deshalb variieren wir den Magnetisierungsstrom in einem Bereich von 0 bis 300mA für den Kern W und von 0 bis 100mA für den Kern F. Durch Anlegen von, durch den Nullpunkt gehenden, Tangenten an die Neukurve kann man nun die maximale Permeabilität und die Anfangspermeabilität bestimmen. Für letzteres sind extra Messungen mit hoher Auflösung im Anfangsbereich der Neukurve durchzuführen. Weiters ist aus der Neukurve noch die Abhängigkeit der Permeabilität von der magnetischen Feldstärke zu berechnen.

Messung C

Bei dieser Messung ist der Frequenzeinfluss auf die Form der Hysteresekurve zu untersuchen. Hierzu wird die Flussdichte bei ca. 0,5T konstant gehalten und die Hystereseschleifen bei verschiedenen Frequenzen auf dasselbe Blatt Papier aufgetragen.

Messung A:

Mit Hilfe der Formeln 10 und 11 berechneten wir uns die Skalierungsfaktoren für das Programm, welche für den Transformator F bei 330,969 für U_x und bei 4,167 für U_y und für den Transformator W bei 232,861 für U_x und bei 8,883 für U_y . Anschließend haben wir nach dem sich die Hysteresekurve im Programm stabilisiert hatte, jeweils 15Mal alle gesuchten Werte gemessen und daraus dann den Mittelwert gebildet. Die Messwerte sind in der Tabelle1 nachzulesen.

Für den **Trafo F** erhält man nun folgende Werte:

Magnetisierungsarbeit: (463 ⁺, 39) J/m³ Koerzitivfeldstärke: (111 ⁺, 5) A/m Remanenz: (0,26 ⁺, 0,01) T Sättigungsfeldstärke: (1068 ⁺, 79) A/m Sättigungsflussdichte: (1,04 ⁺, 0,02) T

Für den Trafo W ergeben sich die hier aufgelisteten Werte:

Magnetisierungsarbeit: (6295 ⁺. 376) J/m³ Koerzitivfeldstärke: (691 ⁺. 24) A/m Remanenz: (1,27 ⁺. 0,02) T Sättigungsfeldstärke: (4705 ⁺. 81) A/m Sättigungsflussdichte: (2,50 ⁺. 0,02) T

Gemäß Abb.5 handelt es sich beim Kern F um irgendein weichmagnetisches Ferrit und bei Kern W um Eisen oder einen Pulverkern. Die Magnetisierungsarbeit beim Transformator W ist deutlich höher als diejenige des Transformators F, ebenso verhalten sich auch die Sättigungsfeldstärke und die Sättigungsflussdichte.

Messung B:

Es wurden hier nun Hysteresekurven bei verschiedenen Feldstärken gemessen. Diese wurden dann in dieselbe Grafik eingetragen:

Abb.7: 18 Hysteresekurven des Transformators F für einen Primärstrom von 2 bis 99mA

Abb.8: 26 Hysteresekurven des Transformators W für einen Primärstrom von 2 bis 300mA

Aus den einzelnen Werten für Sättigungsfeldstärke und Sättigungsflussdichte wurde die Neukurve ermittelt. Diese Werte sind in Tabelle 2 nachlesbar.

Abb.9: Neukurve für den Transformator F

Abb.10: Neukurve für den Transformator W

Durch Division der Flussdichte B durch die Feldstärke H erhält man $\mu_0^*\mu_r$. Somit kann man sich μ_r in Abhängigkeit von H ermitteln. Das maximale μ_r beträgt 1275 für den Transformator

W. Für den Transformator F liegt das maximale μ_r bei 1548. Die Abhängigkeit von μr von H verläuft nicht linear, sonder hat bei einer bestimmten Feldstärke ein Maximum.

Abb.11: Abhängigkeit von μ_r von H für den Transformator F

Abb.12: Abhängigkeit von μ_r von H für den Transformator W

Leider war es auf Grund der schlechten Messgenauigkeit im schwachen Bereich beim Transformator F nicht möglich ein $\mu_{r,min}$ zu bestimmen. Jedoch beim Transformator W erhielten wir, abgesehen von zwei deutlich abweichenden Werten, welche ausgeschieden wurden, ausreichend vernünftige Werte, um sich $\mu_{r,min}$ zu berechen. So legten wir an diese Werte, in einem B-H-Diagramm aufgetragen, eine durch den Nullpunkt gehenden Tangente unterhalb der gedachten Verbindungskurve der Messpunkte. Wenn man dann die Steigung dieser Tangente durch μ_0 dividiert erhält man direkt unsere gesuchtes $\mu_{r,min}$, welches 290 beträgt.

Abb.13: Die Steigung der roten Geraden in dem Diagramm entspricht $\mu_{r,min}*\mu_0$.

Die maximale Permeabilität beider Transformatorkerne liegt im Bereich von mäßigqualitativen Eisen. Der Transformator F erreicht seine maximale Permeabilität schon bei Feldstärken um 300A/m, jedoch liegt dafür die minimale Permeabilität in einen derart schwachen Feldstärkebereich, in welchen keine brauchbaren Messungen mehr zu bekommen waren und wir sie somit nicht bestimmen konnten. Bei Transformatorkern W hingegen fanden wir die maximale Permeabilität bei einer höheren Feldstärke, etwa um die 600A/m. Wir konnten hier sogar die minimale Permeabilität bestimmen, welche im gerade noch messbaren Feldstärkebereich um die 50 A/m liegt. Die Abhängigkeit der relativen Permeabilität von der Feldstärke H lässt sich in beiden Fällen wie erwartet so beschreiben: Zuerst ist sie bei sehr geringen Feldstärken relativ schwach, dann nimmt sie bis zu ihrem Maximum steil zu. Anschließend fällt sie zuerst schnell, aber nicht so schnell wie sie gestiegen ist, dann immer langsamer werdend bei zunehmender Feldstärke ab. Hier sind noch einmal die Ergebnisse des Experiments zusammengefasst:

Transformator F

Maximale relative Permeabilität: 1548

Transformator W

Maximale relative Permeabilität: 1275 Minimale relative Permeabilität: 290

Messung C:

In diesem Experiment sollte die Hysteresekurve bei unterschiedlichen Frequenzen für die Transformatoren F und W gemessen werden. Der Theorie nach sollte bei höherer Frequenz eine höhere Ummagnetisierungsarbeit nötig sein und die Hysteresekurve somit "breiter" werden:

Vergleicht man beide Grafiken miteinander, so merkt einerseits, dass die Hysteresekurven bei F wesentlich "schlanker" sind, also die Ummagnetisierungsarbeiten pro Zyklus kleiner sind, andererseits bemerkt man, dass diese "Mehr-Arbeit" bei höherer Frequenz beim Transformator W stärker zunimmt als beim Transformator F. Es war zwar nicht möglich, sich den inneren Aufbau der Transformatoren anzusehen (ohne Gewalteinwirkung), jedoch ist es wahrscheinlich, dass der Transformator F einen inneren Aufbau besitzt, der diesen Hystereseverlusten vorbeugt (z.B. Lamellenartig aufgebauter Kern zur Eindämmung von Wirbelströmen), während dies beim Transformator W wahrscheinlich nicht der Fall ist.

Tabelle1

Trafo F

	Magnetisierungsarbei				
	t	Koerzitivfeldstärke	Remanenz	Sättigungs-H	Sättigungs-B
	[J/m³]	[A/m]	[T]	[A/m]	[T]
	439	106	0,26	1271	1,08
	410	106	0,23	1244	1,08
	484	119	0,28	1059	1,03
	422	106	0,25	1033	1,03
	463	106	0,26	1033	1,02
	433	119	0,24	1059	1,03
	468	106	0,25	1033	1,03
	457	119	0,25	1033	1,02
	448	119	0,26	1033	1,02
	497	106	0,27	1033	1,03
	508	106	0,27	1033	1,02
	535	119	0,28	1059	1,03
	400	106	0,26	1006	1,03
	474	106	0,25	1033	1,03
	503	119	0,28	1059	1,03
MW	463	111	0,26	1068	1,04
σ_{abs}	39	5	0,01	79	0,02
σ _{rel} [%]	8,32	6,02	5,17	7,36	2,01

Trafo W

	Magnetisierungsarbei				
	t	Koerzitivfeldstärke	Remanenz	Sättigungs-H	Sättigungs-B
	[J/m³]	[A/m]	[T]	[A/m]	[T]
	6635	725	1,28	4677	2,49
	5620	655	1,23	4724	2,52
	6663	702	1,31	4630	2,49
	6528	678	1,28	4818	2,52
	60909	702	1,26	4630	2,49
	5968	655	1,24	4771	2,52
	6032	702	1,30	4584	2,49
	6129	678	1,28	4771	2,52
	5996	678	1,24	4630	2,49
	6555	702	1,30	4818	2,52
	6495	725	1,30	4584	2,49
	5875	655	1,26	4771	2,52
	6203	678	1,26	4771	2,52
	6688	702	1,26	4677	2,49
	6960	725	1,30	4724	2,49
MW	6295	691	1,27	4705	2,50
σ_{abs}	376	24	0,02	81	0,02
σ_{rel} [%]	5,98	3,59	1,95	1,71	0,73

Tabelle2

Sättigungs-H [A/m] Sättigungs-B [T] $\mu_r^*\mu_0$ [V*s/(A*m)] μ_r 396 0,58 0,001454 1157 559 0,90 0,001602 1275 745 1,17 0,001574 1252 904 1,33 0,001475 1174 1071 1,47 0,001377 1095 1285 1,60 0,001244 990 1490 1,71 0,001144 911 1602 1,78 0,001109 882 1975 1,87 0,000945 752 2329 2,01 0,000862 686 2561 2,13 0,000852 662 2748 2,08 0,000756 602 2981 2,13 0,000852 662 2748 2,08 0,000756 538 3493 2,31 0,000661 526 3633 2,35 0,000646 514 4005 2,42 0,000603 480 4238 2,45 0,000578 460 4471 2,49 0,000556 443 24 0,02 0,000734 584 45 0,02 0,000745 384 45 0,02 0,000745 384 45 0,02 0,000456 363 71 0,03 0,000412 328 132 0,07 0,000516 410 Trafo F Sättigungs-H [A/m] Sättigungs-B [T] $\mu_r^*\mu_0$ [V*s/(A*m)] μ_r 424 0,72 0,001692 1346 530 0,83 0,00158 1240 635 0,90 0,001416 1127 788 0,94 0,001196 951 966 0,99 0,00126 817 1059 1,00 0,000876 697 1589 1,08 0,000876 697 1589 1,08 0,000876 697 1589 1,00 0,000876 433 1906 1,12 0,000566 443 1906 1,12 0,000566 456 2085 1,11 0,000576 473 1906 1,12 0,000566 466 2065 1,12 0,000566 456 2065 1,12 0,000566 456	Trafo W			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sättigungs-H [A/m]	Sättigungs-B [T]	μ _r *μ₀ [V*s/(A*m)]	μ _r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	275	0,29	0,001060	844
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	396	0,58	0,001454	1157
7451,170,00157412529041,330,001475117410711,470,001377109512851,600,00124499014901,710,00114491116021,780,00094575223292,010,00086268625612,130,00083266229812,130,00075660229812,130,00066152636332,350,00066451440052,420,00057846044712,490,00057846044712,490,00056633710,030,0004123281320,070,000546363710,030,0004123281320,070,000516410Trafo FSättigungs-H [A/m]\$\mu_r\$4240,720,0015611277880,940,0011969519660,990,00102681710591,000,0008446319660,990,00102681710591,080,00068254319061,120,00058646620651,120,00058646620651,120,00058646620651,120,00058646620651,120,00058646620651,120,00058646620651,120,00	559	0.90	0.001602	1275
904 1,33 0,001475 1174 1071 1,47 0,001377 1095 1285 1,60 0,001244 990 1490 1,71 0,001144 911 1602 1,78 0,001109 882 1975 1,87 0,000945 752 2329 2,01 0,000862 686 2561 2,13 0,000756 602 2981 2,13 0,000715 569 3260 2,20 0,000676 538 3493 2,31 0,00061 526 3633 2,35 0,000646 514 4005 2,42 0,000656 443 24 0,02 0,00078 460 4471 2,49 0,000556 443 24 0,02 0,000429 342 52 0,02 0,000456 363 71 0,03 0,000412 328 132 0,07 0,000516 410 <i>Trafo F</i> Sättigungs-H [A/m] Sättigungs-B [T] $\mu_r^*\mu_0$ [V*s/(A*m)] μ_r 424 0,72 0,00158 1240 635 0,90 0,01416 1127 788 0,94 0,001196 951 966 0,99 0,00126 817 1059 1,00 0,000944 751 1218 1,07 0,000862 543 1906 1,12 0,000468 544 30000682 543 1906 1,12 0,000586 466 2065 1,12 0,00046 378 1906 1,12 0,000882 543 1906 1,12 0,000586 466 2065 1,12 0,000476 378 36 0,06 0,001562 1243 52 0,02 0,000476 378 36 0,06 0,001562 1243 56 0,09 0,001619 1288 77 0,12 0,001541 1226	745	1.17	0.001574	1252
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	904	1.33	0.001475	1174
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1071	1.47	0.001377	1095
Trafo F Sättigungs-H [A/m] Sättigungs-B [T] µ ^r µ ₀ [V*s/(A*m)] µ ^r 424 0,72 0,00045 363 71 0,000876 400 4471 2,49 0,000576 400 4471 2,49 0,000576 400 4471 2,49 0,000576 400 4471 2,49 0,000578 460 4471 2,49 0,000412 328 132 0,07 0,000578 420 52 0,02 0,000456 363 71 0,03 0,000412 328 132 0,07 0,000586 466 2065 1,12 0,000876 697 1589 1,08 0,000682 543 1906 1,12 0,000586 466 2065 1,12 0,000496 395 2383 1,13 0,000476 378 36 0,06 0,001562 1243 56 0,09 0,001619 1288 77 0,12 0,001541 1226	1285	1,60	0.001244	990
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1490	1 71	0,001144	911
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1602	1 78	0,001109	882
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1975	1,70	0,000945	752
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2320	2 01	0,000940	686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2525	2,01	0,000002	662
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2301	2,13	0,000052	602
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2740	2,00	0,000730	560
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2901	2,13	0,000715	509
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3260	2,20	0,000676	538
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3493	2,31	0,000601	520 544
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3633	2,35	0,000646	514
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4005	2,42	0,000603	480
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4238	2,45	0,000578	460
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4471	2,49	0,000556	443
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	0,02	0,000734	584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	0,02	0,000429	342
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	0,02	0,000456	363
132 $0,07$ $0,000516$ 410Trafo FSättigungs-H [A/m]Sättigungs-B [T] $\mu_r^*\mu_0$ [V*s/(A*m)] μ_r 424 $0,72$ $0,001692$ 1346530 $0,83$ $0,001558$ 1240635 $0,90$ $0,001416$ 1127788 $0,94$ $0,001196$ 951966 $0,99$ $0,001026$ 8171059 $1,00$ $0,000944$ 7511218 $1,07$ $0,000876$ 6971589 $1,08$ $0,000682$ 5431906 $1,12$ $0,000586$ 4662065 $1,12$ $0,000541$ 4302251 $1,12$ $0,000476$ 37836 $0,06$ $0,001562$ 124356 $0,09$ $0,001619$ 128877 $0,12$ $0,001541$ 1226	71	0,03	0,000412	328
Trafo FSättigungs-H [A/m]Sättigungs-B [T] $\mu_r^*\mu_0$ [V*s/(A*m)] μ_r 4240,720,00169213465300,830,00155812406350,900,00141611277880,940,0011969519660,990,00102681710591,000,00094475112181,070,00087669715891,080,00068254319061,120,00058646620651,120,00054143022511,120,000476378360,060,0015621243560,090,0016191288770,120,0015411226	132	0,07	0,000516	410
Sättigungs-H [A/m]Sättigungs-B [T] $\mu_r \mu_0 [V*s/(A*m)]$ μ_r μ_r 4240,720,00169213465300,830,00155812406350,900,00141611277880,940,0011969519660,990,00102681710591,000,00094475112181,070,00087669715891,080,00068254319061,120,00058646620651,120,00054143022511,120,00049639523831,130,000476378360,060,0015621243560,090,0016191288770,120,0015411226	Trafo F			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sättigungs-H [A/m]	Sättigungs-B [T]	μ _r *μ₀ [V*s/(A*m)]	μ _r
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	424	0,72	0,001692	1346
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	530	0,83	0,001558	1240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	635	0,90	0,001416	1127
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	788	0,94	0,001196	951
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	966	0,99	0,001026	817
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1059	1,00	0,000944	751
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1218	1,07	0,000876	697
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1589	1,08	0,000682	543
2065 1,12 0,000541 430 2251 1,12 0,000496 395 2383 1,13 0,000476 378 36 0,06 0,001562 1243 56 0,09 0,001619 1288 77 0,12 0,001541 1226	1906	1,12	0.000586	466
22511,120,00049639523831,130,000476378360,060,0015621243560,090,0016191288770,120,0015411226000.160.015781256	2065	1,12	0,000541	430
2383 1,13 0,000476 378 36 0,06 0,001562 1243 56 0,09 0,001619 1288 77 0,12 0,001541 1226	2251	1.12	0.000496	395
36 0,06 0,001562 1243 56 0,09 0,001619 1288 77 0,12 0,001541 1226 00 0.16 0.001578 1256	2383	1.13	0.000476	378
56 0,09 0,001619 1288 77 0,12 0,001541 1226 00 0.16 0.001578 1256	36	0.06	0.001562	1243
77 0,12 0,001541 1226 00 0.46 0.001578 1256	56	0,09	0.001619	1288
	77	0,12	0.001541	1226
	99	0.16	0 001578	1256
201 0.36 0.001781 1417	201	0.36	0 001781	1417
291 0.57 0.001946 1548	291	0.57	0.001946	1548