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Contextuality and the Kochen-Specker Theorem 
 

ABSTRACT 
 

Since local hidden variables are forbidden by Bell’s theorem, the Kochen-Specker theorem 

forces a theory for quantum mechanics based on hidden variables to be contextual. Several 

experiments have been performed to proof this powerful theorem. I will review the 

consequences of the Kochen-Specker theorem and contextuality on the interpretation of 

quantum mechanics.  
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INTRODUCTION 
 

Beside the common Copenhagen interpretation of quantum mechanics there are hidden-

variable theories postulated as a possible consequence of the EPR-Paradox. Most of them can 

be eliminated by so called “no-go theorems” for hidden variables. The most famous of them is 

the Bell’s Theorem. The Kochen-Specker theorem complements the Bell’s Inequality and 

excludes contextuality (in addition to locality) from hidden-variable theories too. Like Bell’s 

theorem the Kochen-Specker theorem had been experimentally examined and these tests 

showed a perfect agreement with quantum mechanics and Copenhagen interpretation.  

 

INTERPRETATIONS OF QUANTUM MECHANICS 
 

Copenhagen Interpretationi ii

 

The Copenhagen interpretation is designated after the Danish capital, where Niels Bohr and 

Werner Heisenberg were exchanging their thoughts about the probabilistic interpretation of 

wave function. Although there is no clear statement about this interpretation of quantum 

mechanics the heart of this idea is that the wavefunction has no reality. Nature is only 

probabilistic and only a measurement forces it to choose a state, before this there is no 

realism. The process of measurement causes a collapse of the wave function (this feature isn’t 

included in all forms of the Copenhagen interpretation) and the result corresponds with the 

eigenvalue of the measurement operator. This is very important: you should mix up the 

operator with a real value. Furthermore Heisenberg’s Uncertainty Principle prevents us of 

knowing all parameters of a system at once. One famous consequence of this interpretation is 

Schrödinger’s Cat. Nowadays most physicists prefer the Copenhagen interpretation of 

quantum mechanics.  

 

Hidden-Variable Theories 
 

Due to the fact that the Copenhagen interpretation lacks realism and claims that the quantum 

world is only based on pure probability and statistics some famous scientists like Einstein 

stated that quantum mechanics is incomplete and that there must be a deeper reality. 
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Additional parameters have been introduced to make quantum mechanics deterministic. No-

go-Theorems like Bell’s or Kochen-Specker’s in combination with experiments have cut 

down the features of possible hidden-variable theories. Locality and non-contextuality are 

forbidden for these theories, so that there have to be an interaction faster light speed. A 

famous hidden-variable theory is Bohmian mechanicsiii, which is non-local and contextual. 

 

Other Interpretations 
 

There are many more interpretations of quantum mechanics beside those two I’ve already 

mentioned above. The Many-worlds interpretation tries to save realism without hidden 

variables. The key statement of this interpretation is that every possibility becomes true, but in 

a different reality. The universe itself constantly splits into almost infinite slightly different 

worlds and in each of them one possible outcome of a quantum process becomes true. This 

theory implies many interesting aspects like quantum immortality and numerous parallel 

universes. Despite the almost impossibility to prove this theory it shows a couple of 

advantages like an explanation for a fine-tuned universe (anthropic principle) or the removal 

of an observer dependence in quantum mechanics. Other interpretations like the “Many-

minds” or “consciousness cause collapse” (CCC) are introducing unnecessary assumptions 

about human minds into quantum mechanics. In addition to them there are interpretations that 

only slightly differentiate from those I’ve already mentioned.  

 

Comparisoniv

 

The different interpretations are characterised by several features like realism, completeness, 

localism and determinism.  

 

Interpretation Realism Localism Determinism Unique History Observer conscience

Copenhagen No Yes No Yes No 

Hidden Variables Yes No Yes Yes No 

Many Worlds Yes Yes Yes No No 

Many Minds Yes Yes Yes No Yes 

CCC Yes Yes No Yes Yes 

Tab.1: a comparison of the different interpretations of Quantum Mechanics 
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BELL’S THEOREM 
 

EPR-Paradoxv

 

The EPR-Paradox is a Gedankenexperiment of Albert Einstein, Boris Podolsky and Nathan 

Rosen, that intended to show the incompleteness of quantum mechanics. By adding 

conditions like realism, locality, completeness and counterfactual definiteness to quantum 

mechanics you will have to expand your theory with hidden variables to explain effects like 

entanglement (Einstein called it: “spooky action at distance”) because else all this seemingly 

reasonable conditions together cause a contradiction. Another possibility to solve this problem 

is to give up realism and counterfactual definiteness by augmenting with the Copenhagen 

interpretation. Furthermore Bellvi showed that even with hidden variables you can’t keep all 

this conditions together, because you will have to give up locality to stay in agreement with 

the experiments. The experiment for the EPR-Paradox in Bohm’s formulation can be 

imagined like that: A source emits two electrons that have been entangled (prepared to occupy 

a spin singlet in this case). Now there are two possible states for the electrons concerning the 

spin along the z-axis, either electron A has spin up and electron B has spin down or the other 

way round. The electron A is emitted into direction of an observer called Alice and the 

electron B will be sent to Bob who sits in the opposite direction of Alice seen from the source.  

 

 
Fig.1: entangled electrons are sent to Alice and Bob, who perform spin measurements 

 

When Alice and Bob measure the spin along the z-axis, they will get the values I’ve described 

above. But if Bob decides to measure the x-spin he has a 50-50 probability to get spin up (or 

spin down). The Heisenberg uncertainty principle tells us that it is impossible to know the 
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values of two non-commuting variables (like the components of the spin) at the same time, 

but due to the entanglement of the z-spin you will expect that you can also measure the z-spin 

of the electron that has been measured by Bob simply from Alice’ measurement. This doesn’t 

work and the outcome of Alice’ measurement of the z-component of the spin isn’t any longer 

predictable. 

 

Inequalityvii viii

 

If there were hidden variables the correlation between Alice’s and Bob’s results would be 

different than you would expect from pure quantum mechanics. An exact analysis of this 

problem leads to the Bell inequality: 

 

(1) 1 ( , ) ( , ) ( , )C b c C a b C a c+ ≥ −  

 

In this formula a, b and c are the settings of the apparatus in the x-z-plane where Alice and 

Bob perform their spin measurements. The plus indicates that it should be the probability of 

getting spin up. This inequality must be fulfilled by all theories postulating local hidden 

variables. Another more general form of this inequality is the CHSH-inequalityix x: 

 

(2)  2 ( , ) ( , ') ( ', ) ( ', ') 2E a b E a b E a b E a b− ≤ − + + ≤ +

 

Due to the fact that Quantum Mechanics and the experiments violate this formula, the Bell’s 

theorem follows:  

“No physical theory of local hidden variables can ever reproduce all the predictions of 

quantum mechanics” 

The validity of the inequality has been shown by many successful experiments. For more 

details to Bell’s theorem see the handout of Yvonne Venturaxi. 

 

Loopholes 
 

These experiments are mainly in two points criticised which are called the “locality loophole” 

and the “detection loophole”. The locality loophole means that it must be ensured that Alice 

and Bob don’t know which measurement the other performs. This loophole can be closed by 
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putting enough distance between Alice and Bob and that both make their decisions which 

measurement they will perform fast enough, so that the other can’t know it due to the by the 

limited speed of information transfer(light speed). No all photons that reach the detector are 

really detected and this is called the detection loophole. You must show that the non detected 

particles have the same features as the detected (fair sampling theorem). But today there are 

CCD-detectors with a quantum efficiency of up to 99% which can also close this loophole. 

Beside those loopholes I’ve already mentioned there are others, which are based on errors of 

the components of specific experiments. Furthermore the statistical nature of the Bell 

inequality has also been criticised, but this problem has been solved by the GHZ-

experimentxii.xiii xiv By using 3 entangled particles you can proof the violation of the Bell 

inequality with only four measurements.  

 

KOCHEN-SPECKER THEOREM 
 

History 
 

1932 John von Neumann published a proof which showed that quantum mechanics and 

hidden variables aren’t combinable if you require non-contextuality. Despite this proof had 

been cited very often, it was based on wrong assumptions. Based on A.M. Gleason’sxv work 

in 1957 and Bell’s work in 1966 Simon Kochen and Ernst Speckerxvi were able to develop a 

new theorem a year later. By now the Kochen-Specker Theorem has been experimentally 

verified with several different particles (photons, neutrons) during the last years.  

 

The Kochen-Specker Theoremxvii

 

“There is no non-contextual model with hidden variables in quantum mechanics” 

But you can put this statement also into the language of mathematicsxviii: 

Let H be a Hilbert space of quantum mechanical state vectors of dimension x ≥ 3. There is a 

set M of observables on H, containing y elements, such that the following two assumptions are 

contradictory:  

• All y members of M simultaneously have values, i.e. are unambiguously mapped onto 

real numbers (designated, for observables A, B, C, …, by v(A), v(B), v(C), …). 

• Values of observables conform to the following constraints: 
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If A, B, C are all compatible and C = A+B, then v(C) = v(A)+v(B);  

If A, B, C are all compatible and C = A·B, then v(C) = v(A)·v(B). 

The heart of statement is much more than a simple theorem about the geometrical structure of 

the quantum mechanical Hilbert-space. It forbids a certain class of hidden variable theories, 

that isn’t prohibited by Bell’s theorem by showing that realism and non-contextuality cause a 

contradiction. Furthermore some arithmetic rules for measured values of systems of several 

observables follow out of the Kochen-Specker theorem.  

 

Mathematical Background 
 

I’ll try to give you a short overview about the derivation of the Kochen-Specker Theorem. I 

will stick strongly to David Mermin’sxix colourful geometric way to do this. A more detailed 

derivation and proof of the Kochen-Specker theorem can be found their own 29 pages long 

original paper. 

 

We start to describe a three-dimensional state space in terms of observables built out of 

angular momentum components of the spin along various directions. The eigenvalues of these 

observables are either 0 or 1 and the squared spin components along three orthogonal 

directions u, v and w have to fulfil this equation: 

 

(3) 2 2 2 ( 1) 2u v wS S S s s+ + = + =  

 

Furthermore these squared spin components are mutually commuting due to the fact that we 

have spin 1 and so they can be simultaneously measured. We are now producing a set of 

directions for which there is no way whatever to assign 1’s and 0’s to the directions consistent 

with formula (3), thereby rendering the statistical state-dependent part of the argument 

unnecessary. For this aim we have to find a set of three-dimensional vectors that obeys 

several conditions. The colour red stands for the value “1” to the squared spin component 

along a direct and the colour blue stands for “0”. It shall be impossible to colour each vector 

red or blue by using a subset containing one blue and two red vectors. Now we have to show 

that if the angle between two vectors of different colour is less than arctan (0.5), then we can 

find additional vectors which constitute a set (with the original two vectors) that can’t be 

coloured according to the rules. We define the blue vector as the unit vector of the z-axis “z” 

and demand of the red vector “a” to be place in the y-z plane: 
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(4)  , 0 0.5a z yα α= + < <

 

This assumption supplies us with important observations. The x-y plane must be red and so 

the x and y vector too. As a consequence the vector  

 

(5) c x yβ= +  

 

has to be red too. Furthermore another red vector would be: 

 

(6) x ad
β α

= −  

 

The normal of the plane of c and d must be blue and every vector in the plane has to red like: 

 

(7) 1( ) ze c d xβ
β α

= + = + −  

 

The reciprocal value of α must be larger than 2 and the absolute value of the sum of β and its 

own reciprocal value has to be between 2 and infinite. We can find a β where e is along the 

direction f or along g which both have to be red because e is red. 

 

(8) 
f x z
g x z
= −
= − −

 

 

The vectors f and g are orthogonal so their plane is red and its normal vector has to be blue. 

Now we have our contradiction because z which can be written as a linear combination of f 

and g is per definition blue. If a and z have different colours, the set can’t be coloured 

according to the rules. The same procedure can be repeated in the y-x plane and so on. 

Kochen and Specker explicitly displayed a finite set of 117 directions which cannot be 

coloured, but there are other sets with fewer directions too.  
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Fig.2: Kochen and Specker used this diagram to represent their set of uncolourable 

directions. 

 

The Kochen-Specker-Theorem and its proof become simpler in four dimensions. Therefore 

we represent our observables in terms of the Pauli matrices for two independent spin ½-

particles σ1
μ and σ2

ν. The squares of the Pauli matrices are unity and so the eigenvalues are 

±1. Furthermore we can use many well know properties of the Pauli matrices.  

 

 
Fig.3: These nine observables are the basis to a proof of the Kochen-Specker theorem in four 

or more dimensions. 

 

In Fig.3 the observables in each row and each column are mutually commuting. The product 

of the observables in each row and each column, except the right one where it is -1, is 

+1.Since the values assigned to mutually commuting observables must obey any identities 

satisfied by the observables themselves, the identities mentioned in the sentence before 
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require the product of the values assigned to three observables in each row and the first two 

columns to be +1 and for the last column to be -1. This can’t be satisfied, since the row 

identities require the product of all nine values to be 1, while the column identities require it 

to be -1. The Kochen-Specker theorem in 8 dimensions is quite similar to the one in four.  

 

CONTEXTUALITY AND LOCALITY 
 

Localityxx

 

Locality means that interactions are limited to the immediate surroundings. There is no action 

at distance. Distance in this case means that both interacting objects must be in causal contact. 

An event (in the sense of special relativity) can’t influence another event that is outside its 

light conexxi. So locality ensures causality and forbids information to travel faster than light. 

Bell’s theorem states that hidden variable theories are incompatible with locality.  

 

Contextuality 
 

If the results depend on the context of the experiment, then we call it contextual. In the case of 

quantum mechanics this means: The result of a measurement of A depends on another 

measurement on observable B, although these two observables commute with each other. The 

opposite of contextuality is called non-contextuality. Locality is seen as a special case of non-

contextuality, because it requires mutual independence of the results for commuting 

observables even if there is no spacelike separation. Let’s take two sets of mutually 

commuting variables A, B, C… and A, L, M…. But not all B, C… commute with all L, M…. 

If the value of A measured with the first set is the same as if you have measured it with the 

second, you this fact non-contextuality. Due the Kochen-Specker theorem there is no non-

contextual hidden variable theory, so if we still want to have hidden variables we must 

develop a contextual theory. This attempt would leave us with the question why a slightly 

different arrangement of the measurement of predetermined hidden values would give us 

different results. Most hidden variable theories can be eliminated by the Kochen Specker 

theorems and those which don’t violate this theorem, like Bohmian mechanics, have serious 

problems to explain all consequences of their non-locality and contextuality.  
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EXPERIMENTS 
 

Single Photon/Particle Experiment 
 

This experiment was proposed by Christoph Simon, Marek Zukowski, Harald Weinfurther 

and Anton Zeilingerxxii in 2000 and it was accomplished by Yun-Feng Huang, Chuan-Feng 

Li, Yong-Sheng Zhang, Jian-Wei Pan and Guang-Can Guoxxiii in 2002. In this experiment the 

spin/polarisation of the particle and its path are used as degrees of freedom, which gives us a 

non-statistical test of non-contextual hidden variables versus quantum mechanics. Let’s take 4 

observables Z1, X1, Z2, X2 and each can give us two possible results: ±1. Furthermore they 

have predetermined non-contextual values ±1 for individual systems: v(Z1), v(X1), v(Z2), 

v(X2). The result of a measurement of Z1 will always be v(Z1) for an individual system. It 

doesn’t matter which other observables are measured with it, but this leads us to a 

contradiction between non-contextuality and quantum mechanics. We are now using an 

ensemble E for which we can always find the same results for Z1 and Z2 and also for X1 and 

X2. For each system of that ensemble follows: 

 

(9)  1 2 1( ) ( ) ( ) ( )v Z v Z and v X v X= = 2

 

In addition to that v(Z1) can either be the same as v(X1) or not and this leads us after a few 

steps to a contradiction between non-contextuality and quantum mechanics.  

 

(10) 1 2 1 2

1 2 1 2

( ). ( ) ( ). ( ) 1
( ). ( ) ( ). ( )

v Z v Z v X v X
v Z v X v X v Z

= =
⇒ =

 

 

To measure a product of observables you can measure both separately and multiply the result. 

This works in a non-contextual theory but not in general. In case of non-contextuality we get: 

 

(11) 1 2 1 2( . ) ( ). ( )v Z X v Z v X=  

 

We can apply this result on equations (10). Beside non-contextuality we must ensure that 

Z1X2 and X1Z2 are comeasurable. Now we are considering a quantum mechanical system of 

two qubits and the observables: 
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(12) 
(1) (1)

1 1
(2) (2)

2 2

Z X

Z X

Z X

Z X

σ σ

σ σ

= =

= =
 

 

A joint eigenstate of the commuting product observables Z1Z2 and X1X2 with both 

eigenvalues equal to +1 would be this two-qubit state: 

 

(13) 1
1 1( (
2 2

z z z z x x x xψ = + + + − − = + + + − −  

 

Quantum mechanics predicts for that stat that the measured value of Z1X2 will always be 

opposite to the value of X1Z2. This can be seen here: 

 

(14) 

1, 1

1,1

1 1, 1 1,1

1 2 1, 1 1, 1 1 2 1, 1 1, 1

1 2 1,1 1,1 1 2 1,1 1,1

1 1 1( ) ( ) (
2 2 2
1 1 1( ) ( ) (
2 2 2

1 ( )
2

z z z z z z z z z x z x x z x z

z z z z z z z z z x z x x z x z

Z X X Z

Z X X Z

χ

χ

ψ χ χ

χ χ χ χ

χ χ χ χ

−

−

− −

− − − −

− − − −

≡ + + + − − + + − − − + = + + − − − = − + + + −

≡ + + + − − − + − + − + = + − + − + = + + − − −

= +

= + = −

= − = +

)

)

 

 

From these equations follows that in a joint measurement of the two observables Z1X2 and 

X1Z2 they will always be found different. As a consequence the ensemble ψ1 can’t be 

described by any non-contextual theory. The experiment can be performed with a single spin-

½ particle or a photon (using polarisation instead of spin) as it was done. To measure your 

states you only need a source of single particles, beam splitters and Stern-Gerlach-typexxiv 

devices (consist of two magnets different shaped that produce an inhomogeneous magnetic 

field). Our state ψ1 can be mapped onto the one-particle state: 

 

(15) 1
1 ( )
2

u z d zψ = + + −  

 

if u and d are two spatial modes and z+ and z- are the spin states before them. Our 4 

observables are therefore:  
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(16) 1 1

2 2

' ' ' 'Z u u d d X u u d d

Z z z z z X x x x x

= − = −

= + + − − − = + + − − −
 

 

 
Fig.4: devices for measuring pairs of the single-particle observables due to the idea of Simon 

et al 

 

When Huang et al performed their experiment they used single photon detectors (D0-D8) with 

an efficiency of ~70% at 702.2nm, polarizing beam splitters (PBS), rotated half-wave plates 

(HWP) at a special angle and “normal” beam splitters (BS). Their single photon was one 

photon of a photon pair produced in process in a beta-barium-borate crystal.  

 

 
Fig.5: the experimental setup of Huang et al 

 

The results of their measurement showed a clear agreement with quantum mechanics and only 

about 20% of the results have been in agreement with local hidden variables (see Fig.6). 
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Fig.6: Result 1 is the fraction of total coincidence rates that agrees with non-contextual 

hidden variables and result 2 is the fraction that agrees with quantum mechanics. 

 

Neutron Optical Experiment 
 

In 2003 Yuji Hasegawa, Rudolf Loidl, Gerald Badurek, Matthias Baron and Helmut Rauchxxv 

performed a single-neutron optical experiment to proof the validity of the Kochen-Specker 

theorem. In this experiment they prepared a neutron in a non-factorizable state and made a 

joint measurement of commuting observables of this particle.  

 

(17) 1 2
1 ( )
2

p pψ = ↓ ⊗ + ↑ ⊗  

 

This (17) is the normalized total wavefunction. The ket-vectors p1 and p2 represent the two 

possible beam paths in the interferometer and the others are the spin states. This wavefunction 

resembles the one (15) of the previous experiment. Now we will introduce in each case two 

operator projecting the spin or the path part into orthogonal states.  

 

(18) 
; 1

; 1 1 2 1 2

1 ( )(
2
1 ( )(
2

s i i

p i i

P e e

P p e p p e

α α
α

χ χ
χ

−
±

−
±

= ↑ ± ↓ ↑ ± ↓

= ± ±

)

)p
 

 

We use this to calculate our expectation value for a joint measurement of a spin and a path 

state. 
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(19) ; 1 ; 1 ; 1 ; 1( , ) ( ) ( ) [( 1) ( 1) ].[( 1) ( 1) ]s p s s p pE P P P P P Pα α χ χα χ ψ α χ ψ ψ ψ+ − + −= = + + − + + −  

 

Both observables (spin and path) of these projection operators operate in different Hilbert 

spaces and thus they commute. By using the CHSH inequality (see equation (2)) we get 

following condition:  

 

(20) 
1 1 1 2 2 1 2 2

2 2
( , ) ( , ) ( , ) ( , )

S
S E E E Eα χ α χ α χ α χ

− ≤ ≤ +
= − + +

 

 

The projection operators above can be realised in the experiment by a spin rotator for α and a 

phase shifter for χ. By comparing coincidence counts and using some quantum theory you can 

derive the behaviour of the expectation value: 

 

(21) ( , ) cos( )E α χ α χ= +  

 

Now you can find angles where the maximum violation of equation (20) is expected and there 

the value of S is around 2.82 and therefore greater than 2.  

 

 
Fig.7: the experimental setup of Hasegawa et al 

 

The neutrons used in this experiment were monochromatized to a mean wavelength pf 1,92Å 

by using a silicon perfect crystal monochromator. The polarized beam was into two paths to 

produce a Bell state. A uniform magnetic field along the z-axis was provided by a Helmholtz 

Coil. The beam was sent into a neutron interferometer where a spin-tuner and a phase shifter 

had been placed. After this one beam had to pass a spin rotator and a spin analyser before 
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reaching the O-detector, which has an efficiency of more than 99%. During the experiment 

the parameters α and χ had been varied to achieve sufficiently high contrast values. Despite 

the highly efficient detectors a fair sampling theorem (see loopholes) is required because of 

the losses in the interferometer. The result of S=2.051±0.019 shows a violation of inequality 

(20), which has been derived in this case from contextuality. Therefore the Kochen-Specker 

theorem has been shown to be valid once again.  

 

 
Fig.8: interference oscillations of path and spin shows the capability of the experimental 

setup to manipulate the path and spinor subsystems 

 

CONCLUSION 
 

The Kochen-Specker Theorem, although it is less famous than Bell’s Inequality, has shown to 

be more powerful to falsify a certain important class of hidden-variable theories than it. This 

gives us strong arguments in favour of quantum mechanics and the Copenhagen 

interpretation. There are still possible interesting hidden-variable theories left, like Bohmian 

mechanics, they have significant problems to explain why contextuality is necessary for them. 

It is comparable to the debate about Big-Bang versus Steady-State. In both theories it is 

possible to explain phenomena like the comical microwave background (CMB), but in one it 

is much less complicated and clearer. Locality isn’t required for a non-relativistic theory like 

Bohmian mechanics, but all attempts to make it more general have failed up to now. Under 

this conditions and the good experimental conformation of the Kochen-Specker Theorem it is 

no longer reasonable to keep hidden-variable theories and accept that the universe isn’t 

deterministic in the classical sense. But on the other hand remember Einstein: “Everything 

should be made as simple as possible, but not simpler.”xxvi
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