Contextuality and the Kochen-Specker Theorem

Interpretations of Quantum Mechanics

by Christoph Saulder

19. 12. 2007

Interpretations of quantum mechanics

Copenhagen interpretation

the wavefunction has no reality probability is an essential part of nature (wavefunction collapse)

Hidden variable theory

quantum mechanics isn't complete hidden parameters needed for determinism must be non-local and contextual Bohmian mechanics

Comparison

Interpretation	Realism	Localism	Determinism	Unique History	Observer conscience
Copenhagen	No	Yes	No	Yes	No
Hidden Variables	Yes	No	Yes	Yes	No
Many Worlds	Yes	Yes	Yes	No	No
Many Minds	Yes	Yes	Yes	No	Yes
CCC	Yes	Yes	No	Yes	Yes

Einstein-Podolsky-Rosen paradox

Alice and Bob perform spin measurements of entangled particles

quantum mechanics + realism + locality + completeness

→ ?"spooky" action at distance?

Bell's theorem

"No physical theory of local hidden variables can ever reproduce all the predictions of quantum mechanics"

Original version: $1 + C(b,c) \ge |C(a,b) - C(a,c)|$

CHSH version: $-2 \le E(a,b) - E(a,b') + E(a',b) + E(a',b') \le +2$

Possible loopholes: detector loophole, locality loophole

Interaction limited to the immediate surroundings

Causal contact

No superluminal signals

•Bell's theorem

Contextuality

results depend on the context of the experiment

- Take 2 sets of mutually commuting operator: A,B,C,... and A,L,M,...
- > Not all B,C,... commute with all L,M,...
- ➢ If A measured with the first set is equal to A measured with the other set → non-contextuality.

> Else contextuality

Non-contextuality is more general than locality

because: results must be independent for commuting observables even without spacelike separation

> Hidden variables: non-contextual or contextual?

The Kochen-Specker theorem

"There is no non-contextual model with hidden variables in quantum mechanics"

the way to develop a no-go theorem for hidden variables

1932 - John von Neumann
1957 - A.M. Gleason
1966 - John S. Bell
1967 - Simon Kochen and Ernst Specker

mathematical formulation

- Let H be a Hilbert space of quantum mechanical state vectors of dimension x ≥ 3. There is a set M of observables on H, containing y elements, such that the following two assumptions are contradictory:
- All y members of M simultaneously have values, i.e. are unambiguously mapped onto real numbers (designated, for observables A, B, C, ..., by v(A), v(B), v(C), ...).
- Values of observables conform to the following constraints:
- If A, B, C are all compatible and C = A+B, then v(C) = v(A)+v(B);
- > If A, B, C are all compatible and $C = A \cdot B$, then $v(C) = v(A) \cdot v(B)$.

Derivation

> 3D state space of observables angular momentum components of spin > eigenvalue are 0 or 1 square spin components in 3 orthogonal directions $S_{\mu}^{2} + S_{\mu}^{2} + S_{\mu}^{2} = s(s+1) = 2$ > they are mutually commuting > can be simultaneous measured \succ looking for a set of 3D vectors obeying conditions: red=1 blue=0 It shall be impossible to colour each vector red or blue by using a subset containing one blue and two red vectors.

> doing some geometry …

if the angle between 2 different coloured vectors <arctan(0.5), we can find uncolourable directions</p>

Kochen and Specker discovered 117 vectors

> also sets with fewer vectors possible

it gets simpler in 4 dimensions

Now: observables are Pauli matrices for two independent spin ½-particles σ¹_µ and σ²_ν

using properties of Pauli matrices

> Observables are mutually commuting

Product in each row is +1

Product in first 2 columns is +1 in the last column it is -1

σ_x^1	σ_x^2	$\sigma_x^1\sigma_x^2$
σ_y^2	σ_y^1 .	$\sigma_y^1\sigma_y^2$
$\sigma_x^1 \sigma_y^2$	$\sigma_x^2 \sigma_y^1$	$\sigma_z^1 \sigma_z^2$

These conditions can't be satisfied - contradiction!

Single photon experiment

Proposed by Christoph Simon, Marek Zukowski, Harald Weinfurther and Anton Zeilinger in 2000

Performed by Yun-Feng Huang, Chuan-Feng Li, Yong-Sheng Zhang, Jian-Wei Pan and Guang-Can Guo in 2002

Uses photons polarisation and path degrees of freedom

> 4 observables Z_1 , X_1 , Z_2 , X_2

Predetermined non-contextual values: v(Z₁), v(X₁), v(Z₂), v(X₂)

assuming non-contextuality in our calculations and a suitable ensemble where:
v(Z₁) = v(Z₂) and v(X₁) = v(X₂)

> we get following relations: $v(Z_1).v(Z_2) = v(X_1).v(X_2) = 1$ $\Rightarrow v(Z_1).v(X_2) = v(X_1).v(Z_2)$ $v(Z_1.X_2) = v(Z_1).v(X_2)$ Now: quantum mechanical system of 2 qubits

> Observables:
$$Z_1 = \sigma_Z^{(1)}$$
 $X_1 = \sigma_X^{(1)}$
 $Z_2 = \sigma_Z^{(2)}$ $X_2 = \sigma_X^{(2)}$

> Use a joint eigenstate of the commuting product observables Z_1Z_2 and X_1X_2 : $|\psi_1\rangle = \frac{1}{\sqrt{2}}(|+z\rangle|+z\rangle+|-z\rangle|-z\rangle = \frac{1}{\sqrt{2}}(|+x\rangle|+x\rangle+|-x\rangle|-x\rangle$

Quantum mechanics predicts: the value measured for Z₁X₂ will always be opposite to that of X₁Z₂

The state in the experiment: $|\psi_1\rangle = \frac{1}{\sqrt{2}}(|u\rangle|z+\rangle+|d\rangle|z-\rangle$

Observables: $Z_1 = |u\rangle\langle u| - |d\rangle\langle d|$ $X_1 = |u'\rangle\langle u'| - |d'\rangle\langle d'|$ $Z_2 = |z+\rangle\langle z+|-|z-\rangle\langle z-|$ $X_2 = |x+\rangle\langle x+|-|x-\rangle\langle x-|$

Measurement of these observables with beam-splitters and

Stern-Gerlach devices

Results show an agreement with quantum mechanics

Experimental setup

Neutron optical experiment

Performed by Yuji Hasegawa, Rudolf Loidl, Gerald Badurek, Matthias Baron and Helmut Rauch in 2003

Neutron in a non-factorizable state and joint measurement of two commuting observables

Degrees of freedom: path in interferometer spin states > Total wavefunction $|\psi\rangle = \frac{1}{\sqrt{2}} (|\downarrow\rangle \otimes |p_1\rangle + |\uparrow\rangle \otimes |p_2\rangle)$

Projections along orthogonal states

$$\begin{split} P_{\alpha;\pm1}^{s} &= \frac{1}{2} (\left|\uparrow\right\rangle \pm e^{i\alpha} \left|\downarrow\right\rangle) (\left\langle\uparrow\right| \pm e^{-i\alpha} \left\langle\downarrow\right|) \\ P_{\chi;\pm1}^{p} &= \frac{1}{2} (\left|p_{1}\right\rangle \pm e^{i\chi} \left|p_{2}\right\rangle) (\left\langle p_{1}\right| \pm e^{-i\chi} \left\langle p_{2}\right|) \end{split}$$

Projection operators realised by spin rotator and phase shifters in the experiment

Expectation value of joint measurement of spin and path:

 $E(\alpha, \chi) = \left\langle \psi \left| P^{s}(\alpha) P^{p}(\chi) \right| \psi \right\rangle = \left\langle \psi \left| [(+1) P^{s}_{\alpha;+1} + (-1) P^{s}_{\alpha;-1}] . [(+1) P^{p}_{\chi;+1} + (-1) P^{p}_{\chi;-1}] \right| \psi \right\rangle$

> Using CHSH-inequality $-2 \le S \le +2$ $S = E(\alpha_1, \chi_1) - E(\alpha_1, \chi_2) + E(\alpha_2, \chi_1) + E(\alpha_2, \chi_2)$

Coincidence count rates + Quantum mechanics ->

> Behaviour the expectation value $E(\alpha, \chi) = \cos(\alpha + \chi)$

▶ theoretical maximum violation at some angles
 → S ≈ 2.82

Experimental setup

Highly efficient detectors, but losses in interferometer → fair sampling theorem required

Correct behaviour of expectation value

Measured S=2.051±0.019 violets inequality

Summary

Interpretations of quantum mechanics: Copenhagen Interpretation, hidden variables, many worlds, ...

> EPR-Paradox \rightarrow is quantum mechanics incomplete

> Bell's inequality: no local hidden variables

Non-contextuality is more general than locality

Kochen-Specker theorem: "There is no non-contextual model with hidden variables in quantum mechanics"

successfully experimentally proved: Single photon and neutron optical experiments

Only contextual hidden variables possible like Bohmian mechanics, but deeper insight?

"Everything should be made as simple as possible, but not simpler."

