Challenges of BAO peak measurement using photometric data

by Christoph Saulder 크리스토포 사울다

Collaborators

Yong-seon Song (KASI)

Zhijie Ding (SJTU)

Minji Oh (Chosun University)

Rongpu Zhou (University of Pittsburgh)

Yi Zheng (SYSU)

Ashley Ross (Ohio State University)

Feng Shi (Xidian University)

Jeffrey Newman (University of Pittsburgh)

Srivatsan Sridhar (formerly KASI)

Chia-Hsun Chuang (Stanford University)

Measuring the BAO in configuration space

- Fast codes like corrfunc
- → number counts DD, DR, RR as a function of separation

Estimator for correlation function:
ξ_{LS} = (DD - 2*DR + RR)/RR
(Landy-Szalay estimator)

Anisotropic correlation function

anisotropic $\xi(s,\mu)$

projected angular seperation σ [h^{-1} Mpc]

isotropic $\xi(s)$

projected angular seperation σ [h^{-1} Mpc]

Redshift distance relation

- Ideally: perfect correlation between redshift and distance
- In practice:
 - Redshift space distortions due to peculiar motions
 - Uncertainty of redshift measurements
 - Relatively small for spectroscopic redshifts
 - But huge for photometric redshifts (!)

Photometric redshifts washes out clustering features

Photometric redshifts washes out clustering features

Photometric redshifts washes out clustering features

Simulations

• 100 Cubic box dark matter only simulation with 1890 Mpc/h and a mass resolution of 5.5 10^{11} M $_{\odot}$

 Populated using an HOD model corresponding to the DESI LRG at z=0.7

Used for basic tests of our methods

DESI

- Dark Energy Spectroscopic Instrument survey
- Ongoing spectroscopic survey
- Running 5 years (1 done, 4 more to go)
- Photometric survey for target selection: DESI Legacy survey DR9 ... already available!

Footprint

- LRG DR9 North photometric
- LRG DR9 North spectroscopic
- LRG DR9 South photometric

LRG DR9 South spectroscopic

Target classes

- MWS: not for cosmology
- BGS: z < 0.5
- LRG: 0.4 < z < 1.1
- ELG: 0.6 < z < 1.5
- QSO: 0.8 < z 3.5

 Focus on LRG: balance between photometric redshift uncertainty and sample size

Photometric data from DESI

- Observational data from the DESI Legacy Imaging survey DR9
- Sridhar+ 2020 already did the Southern photometric footprint with DR8
- Original plan: update with DR9 and also include the Northern photometric footprint
- Improved LRG target selection

Why is it challenging?

- We can only use the lower µ-bins, signal gets washed out in the others.
- Systematic shift of the photometric BAO as a function of $\boldsymbol{\mu}.$
- Chan+2021 found a similar effect and also a possible solution, but there is more to it.
- Systematic shift of the BAO peak location when comparing spectroscopic and photometric data!

Old news: shifting BAO peak

All figures on this slide are from Chan+2021 (arXiv:2110.13332)

Solution: S \rightarrow S₁

photometric data $\sigma_0=0.02$

Fresh news: BAO peak offset

 One detail missed: the location of the photometric BAO is systematically offset from the spectroscopic BAO peak

New findings, new problems

Quantifying the offset

• Re-evaluating older papers (eg. Sridhar+ 2020)

• Cosmology dependence of the offset? \rightarrow What can we still learn from the BAO peak?

Testing for cosmological dependency of the offset

Challenge: cosmic variance and HOD effects

Summary and Conclusion

- Photometric BAO peak is shifting between different µ-bins as a function of s
- Location of the photometric BAO peak is stable between different $\mu\text{-bins}$ as a function of s $_{\perp}$
- Location of the photometric BAO peak is systematically offset from the spectroscopic (true) location
- A challenge for all future BAO peak studies using photometric data

ANY QUESTIONS?

Backup Slides

The fitting function

 $\xi_{\text{mod}}(s) = B + \left(\frac{s}{s_0}\right)^{-\gamma} + \frac{N}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(s-s_m)^2}{2\sigma^2}\right)$

Other BAO peak measurements

