The benefits and challenges of using photometric data for BAO peak measurments

by Christoph Saulder

Collaborators

Yong-seon Song (KASI)

Zhijie Ding (SJTU)

Minji Oh (Chosun University)

Rongpu Zhou (University of Pittsburgh)

Yi Zheng (SYSU)

Ashley Ross (Ohio State University)

Feng Shi (Xidian University)

Jeffrey Newman (University of Pittsburgh)

Srivatsan Sridhar (formerly KASI)

Chia-Hsun Chuang (Stanford University)

What is the BAO (peak)?

Baryonic Acoustic Oscillations

Measuring the BAO in configuration space

- Fast codes like corrfunc
- → number counts DD, DR, RR as a function of separation

Estimator for correlation function:
 ξ_{LS} = (DD - 2*DR + RR)/RR
 (Landy-Szalay estimator)

Anisotropic correlation function

anisotropic $\xi(s,\mu)$

projected angular seperation σ [h^{-1} Mpc]

isotropic $\xi(s)$

projected angular seperation σ [h^{-1} Mpc]

Redshift distance relation

- Ideally: perfect correlation between redshift and distance
- In practice:
 - Redshift space distortions due to peculiar motions
 - Uncertainty of redshift measurements
 - Relatively small for spectroscopic redshifts
 - But huge for photometric redshifts (!)

 $\sigma_0 = 0.006$

Simulations

- 100 Cubic box dark matter only simulation with 1890 Mpc/h and a mass resolution of 5.5 10^{11} M_{\odot}
- Populated using an HOD model corresponding to the DESI LRG at z=0.7
- Used for basic tests of our methods
- Additionally, cut-sky easy-mocks matching the DESI footprint for the covariance matrix of the observational data

Observational data

- Dark Energy Spectroscopic Instrument survey
- Ongoing spectroscopic survey
- Data from from the first few month is already internally available
- Photometric survey for target selection: DESI Legacy survey DR9

Target classes

- MWS: not for cosmology
- BGS: z < 0.5
- LRG: 0.4 < z < 1.1
- ELG: 0.6 < z < 1.5
- QSO: 0.8 < z 3.5

 Focus on LRG: balance between photometric redshift uncertainty and sample size

Footprint

- LRG DR9 North photometric
- LRG DR9 North spectroscopic
- LRG DR9 South photometric

LRG DR9 South spectroscopic

Processed spectroscopic data

- DESI photometric footprint
- DESI spectroscopy by July 2021
- DESI spectroscopic footprint
- galactic equator

Our possibilities right now:

 Just use the photometric data collected by the DESI Legacy Imaging Survey DR9

 Use the already available spectroscopic data and use cross-correlation with the photometric data to account for the incompleteness of the current spectroscopic survey footprint

Cross-correlations

- Cross-correlations between the spectroscopic data of DESI (after about one pass) and the photometric data of the same area (and surroundings)
- Tests on simulations
- First tests with observations using the internal DESI DA0.2 data release

Fibre assignment

- Tiling strategy of DESI
- Comparing 1-pass with many passes
- Impact of fibre placements and completeness of the spectroscopic data

First pass

fibre assignment after 1 pass fibre assignment after 1 pass 1750 · 1340 1500 -1250 -1320 [Ч/>dW] ∧ 1300 [Wpc/h] 750 -500 -1280 250 -1260 0 0 250 500 750 1000 1250 1500 1750 320 340 360 x [Mpc/h] x [Mpc/h]

DESI DA0.2 data

- DESI photometric footprint
- spectroscopic data used
- photometric data used

galactic equator

- DESI photometric footprint
- spectroscopic data used
- photometric data used
- galactic equator

Differences in the photometric selection

→ North and South are treated separately

Photometric data used in a 2° radius around spectroscopic tile centres

DESI DA0.2 data

Advantages of cross-correlations

- Cross-correlation naturally recovers features, even if the spectroscopic data set is incomplete and biased due to fibre assignment
- Complimentary to the other methods such as PIP weights (combining both doesn't improve the data)
- Perfectly suited for early DESI data (single pass or few passes) such as DA0.2 and the year 1 data.

Disadvantages of cross-correlations

- Only the lower µ-bins of the anisotropic correlation function can be used.
- Any improvements over the photometric correlation function alone with be ultimately outdone by the spectroscopic correlation once the survey is more complete.
- Dominated by the photometric correlation function
 Suffers from the same systematic biases as it!

Photometric data only

- Observational data from the DESI Legacy Imaging survey DR9
- Sridhar+ 2020 already did the Southern photometric footprint with DR8
- Original plan: update with DR9 and also include the Northern photometric footprint
- Improved LRG target selection

Photometric data only

- Observational data from the DESI Legacy Imaging survey DR9
- Sridhar+ 2020 already did the Southern photometric footprint with DR8
- Original plan: update with DR9 and also include the Northern photometric footprint
- Improved LRG target selection

BAO peak measurements LRG North $\tilde{\mu} = 0.083$

BAO peak measurements LRG North $\tilde{\mu} = 0.083$

BAO peak measurements LRG North $\tilde{\mu} = 0.083$

BAO peak measurements LRG North $\ddot{\mu} = 0.083$

So, what is the problem?

- Surprisingly well constraint value for the peak location in the North, but also relatively small value (tension with Planck).
- Additional tests: systematic shift of the photometric BAO as a function of μ .
- Chan+2021 found a similar effect and also a possible solution, but there is more to it.

Old news: shifting BAO peak

All figures on this slide are from Chan+2021 (arXiv:2110.13332)

Solution: S \rightarrow S₁

photometric data $\sigma_0=0.02$

Fresh news: BAO peak offset

 One detail missed: the location of the photometric BAO is systematically offset from the spectroscopic BAO peak

New findings, new problems

- Quantifying the offset
- Re-evaluating older papers (eg. Sridhar+ 2020)
- Also affects the photometric-spectroscopic cross-correlations
 - \rightarrow similar offset, but not exactly the same
- Cosmology dependence of the offset? →
 What can we still learn from the BAO peak?

Testing for cosmological dependency of the offset

Challenge: cosmic variance \rightarrow more simulations

Next steps

- Quantify shift of the photometric BAO peak
- Redo the photometric DR9 measurements in terms of $\xi(s_{\perp},\mu)$
 - \rightarrow publish the much delayed paper on them
- Adjust the method for the cross-correlations
- Apply cross-correlations to DESI DA0.2 and in the future to the DESI Y1 data

Summary and Conclusion

- Photometric BAO peak is shifting between different µ-bins as a function of s
- Location of the photometric BAO peak is stable between different $\mu\text{-bins}$ as a function of s $_{\perp}$
- Location of the photometric BAO peak is systematically offset from the spectroscopic (true) location
- A challenge for all future BAO peak studies using photometric data (including the cross-correlations)

ANY QUESTIONS?

Backup Slides
The fitting function

 $\xi_{\text{mod}}(s) = B + \left(\frac{s}{s_0}\right)^{-\gamma} + \frac{N}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(s-s_m)^2}{2\sigma^2}\right)$

Other BAO peak measurements

