Exotic galaxies as tests for hydrodynamical simulations

Christoph Saulder

Collaborators

Christoph Saulder (KIAS)

Owain Snaith (KIAS)

Changbom Park (KIAS)

Clotilde Laigle (University of Oxford)

IllustrisTNG team

Illustris

IllustrisTNG

Illustris

IllustrisTNG

HorizonAGN

4 big hydrodynamical simulations

- About 100 Mpc/h cubes each (300Mpc/h for TNG)
- Considering baryonic physics, but sub-grid physics are implemented slightly differently
- Different time resolution (number of snapshots)
- Different cosmological parameters
- Different ways to detect subhalos (HorizonAGN does not use SubFind)
- Different parameters provided by the simulations and value added catalogues

Dark matter deprived galaxies

- How could one get those?
 - Stripping of the outer dark matter halo (Limousin+ 2007, 2009)
 - Stochastic effects
 - Violent interactions disrupting the dark matter halo

Looking for massive galaxies (beyond the knee of the stellar mass function)
 (NOT similar too NGC1052-DF2 (VanDokkum+2018))

• Stellar masses > $8 \times 10^{10} M_{\odot}$

Observational data

NGC7507 (Lane+ 2016)

- Analysis of the kinematics of its globular clusters and planetary nebulae
- "isolated elliptical"
- 2x10¹¹ M_o stellar mass and about the same for dark matter within ~22kpc,
- Two galaxies in A611 (Monna+ 2016)
 - Strong lensing cluster
 - G1 and G2 have dark matter halo radii < 15kpc

Identifying dark matter deprived galaxies in simulations

- Looking for outliers of the stellar masshalo mass relation
- How common are those galaxies?
- Comparing their properties between the different simulations.
- What are the processes forming such exotic galaxies?

Dark matter deprived galaxies orbit the centre of clusters at a few 100kpc

• Notably low v_{rot}/σ_0 in EAGLE

 Indication for slow rotators

 Not as prominent in HorizonAGN

- Below average stellar angular momentum in Illustris
- In EAGLE dark matter deprived galaxies have notably low stellar angular momentum
 –> clear outliers for their mass range

The loss of dark matter

- Candidates are near the centre (a few 100kpc from the BCG) of rich cluster
- Gradual loss of the outer dark matter halo via tidal stripping (peaks at pericentre)

Examples in EAGLE

Loss of rotation

No correlation with loss of the dark matter halo
 Correlation with the end of starformation

Examples in IllustrisTNG

Statistics

Justris

- 37 candidates
- 3% of massive galaxies
- 1.1% of bright galaxies
- 42% precision for observational recovery

IllustrisTNG

- 29 candidates
- 3% of massive galaxies
 - 1.5% of bright galaxies
- 44% precision for observational recovery

• Eagle

- 14 candidates
- 3% of massive galaxies
- 1.6% of bright galaxies
- 85% precision for observational recovery

HorizonAGN

- 50 candidates
- 1.4% of massive galaxies
- 2.3% of bright galaxies
- 18% precision for observational recovery 21

13

0.8

0.7

- 0.6

- 0.5 - 0.5 - 0.4

0.3

0.2

0.1

Oddballs

- Extremely rare (5 in EAGLE, 1 in Illustris, 1 in IllustrisTNG) isolated dark matter deprived galaxies
 - Oddball in Illustris already discussed in Yu+ 2018 ... passage and deflection through a cluster destroyed its dark matter halo
- These galaxies remain stable for several Gigayears.
- No clear properties ... one even retains a disc and some star formation, while others are red, dead, but chaotic.

Outlook

- Identify candidates for dark matter stripped galaxies in surveys (using our criteria)
- Look for suitable archive data or carry out follow up observation to confirm their properties (especially kinematics)
- Looking for known suitable strong lenses
- Comparison with the predictions of the simulations (Illustris(TNG) vs EAGLE)
- Possible confusion with certain local red nugget survivors (no over-massive central black holes like in NGC 1277 (van den Bosch+ 2012))

Summary and Conclusions

- Slow stripping of the outer dark matter halos in rich clusters
- Compact, red galaxies near the centre that might be slow rotators
- Different simulations predict similar number densities but different properties for them
- Rare oddball galaxies
- Isolated dark matter deprived galaxies with a violent event in their history
- Potential laboratories to test modified gravity
 Upcoming paper: Saulder et. al in preparation

ANY QUESTIONS?

