
Bakkalaureatsarbeit

Lie-Integrator

Verfasser: Christoph Saulder

Betreuer: Rudolf Dvorak

 1

ABSTRACT

The aim of this work is to develop a modern and more flexible Lie-Integrator based on the

work of A. Hanslmeier and R. Dvorak from 1983. The program shall be able to calculate the

movement of objects in n-body systems with Newtonian gravitational interaction.

Furthermore the user shall be able to evaluate the results of these calculations with the same

program. In addition to that there shall be a function to do series of calculations with slightly

different initial conditions automatically. The result of these considerations is a modern

numerical integrator with a graphical surface and an easy handling. The integrator is

programmed in Delphi6 and uses OpenGL for 3D-applications.

KEY WORDS: Lie-Integrator, celestial mechanics, n-body systems, computer program,

numerical integration, Delphi6.

 2

TABLE OF CONTENTS

ABSTRACT ... 1

TABLE OF CONTENTS ... 2

1. INTRODUCTION.. 3

2. LIE-INTEGRATION ... 4

2.1 Sophus Lie.. 4

2.2 Lie-Integration as method to solve differential equations.. 5

2.3 Application of the Lie-Integration method on the 2-body and the n-body problem.. 7

2.4 Advantages of the Lie-Integration method... 9

3. PROGRAMMING LANGUAGE “DELPHI6” ... 10

3.1 Programming environment... 10

3.2 Features of Delphi6 .. 11

3.3 Syntax... 12

4. MODIFICATIONS .. 17

5. PROGRAM ELEMENTS .. 20

5.1 Main menu.. 20

5.2 Help system .. 22

5.3 Scans... 23

5.4 Resonances ... 27

5.5 Habitable Zone ... 28

5.6 Tables ... 30

5.7 Diagrams .. 32

5.8 Stable elements... 35

5.9 Colour palette ... 36

5.10 Stability maps ... 37

5.11 Colouration... 39

5.12 3D-animations .. 40

5.13 3D-window... 42

5.14 Exoplanets - Calculations... 45

5.15 Exoplanets - Evaluation ... 46

5.16 Load, Save and Samples... 47

6. CODE SAMPLES .. 48

6.1 The main procedure.. 48

6.2 Lie Integration procedure ... 50

6.3 Coefficient calculation procedure .. 56

6.4 OpenGL Paint procedure.. 57

7. POSSIBLE APPLICATIONS OF THE LIE-INTEGRATOR ... 61

7.1 Long-time numerical integration of orbits ... 61

7.2 Stability analysis of exoplanetary systems... 63

7.3 Other imaginable applications.. 64

8. CONCLUSION .. 65

REFERENCES... 67

 3

1. INTRODUCTION

Lie-Integration is a method to solve numerically systems of differential equations by using

lie-series. For this problem we are considering the Newtonian movement equations for objects

with mutual gravitational interactions. The hard work to apply the Lie-Integration method on

these equations and to develop an algorithm which can be processed into a computer program

has already be done by A. Hanslmeier and R. Dvorak
i
 in 1983 and I am very thankful being

allowed to use the source code of their program. I translated the source code of their program

(to which I’ll be referring from now as “Old Lie-Integrator (OLI)”) form Fortran77 into

Delphi6 and improved it a little by using new features of my new programming language. The

New Lie-Integrator (as I’ll be referring to my program from now) uses a graphical interface

with a clearly labelled input mask to get the input data instead of input files like the OLI, but

you can also save and load your input data to and from files. In addition to the simple

calculation of entered parameters of one system, the program can perform a sequence of

calculation of systems with slightly different initial conditions, so that you can “scan” through

the values of the orbit elements of one object. Moreover the NLI possesses a special tool to

calculate artificial radial velocity curves of exoplanetary systems. This program feature can

help to discover a deviation from the Keplerian fits which are usually used to find the orbit

elements of multiple exoplanetary systems, but which won’t be valid if there are strong

dynamical interactions between the planets. The most important improvement of the NLI

compared to OLI is that you won’t need another program for most kinds of scientific

evaluations of your data. The NLI is equipped with a couple of tools which are capable to

produce the needed diagrams. You can get tables, line diagrams, stability maps and even 3D-

animitions just by opening the right window in the program. Summing up we can say that the

NLI is a modern program which unifies the high speed and accuracy of the OLI and the user

friendliness of up-to-date professional software.

 4

2. LIE-INTEGRATION

2.1 Sophus Lieii

Sophus Lie was a Norwegian mathematician, who was born on the17
th

 December 1842 in

Nordfjordeid. He tried to study several different sciences (e.g. astronomy) but finally got to

mathematics. There he published his first paper in 1869. Only a few years later he developed

the Lie-Integration as a method to solve differential equations in the years 1871 and 1872.

Furthermore Sophus Lie is known because of several works about geometry, transformation

groups and commutator algebra. During his life he taught in Leipzig and Oslo. Personally

Sophus Lie didn’t seem to be the easiest man to get around with. It is told that he had a

tendency to depressions and got in quarrel with his colloquies. In spite of this he was a very

familiar human. Sophus Lie died on the 18
th

 February 1899 in Oslo.

Fig. 1: Sophus Lie

 5

2.2 Lie-Integration as method to solve differential equations

First of all it is to mention that the Lie-Integration, despite the fact it’s still an integration

method, has very little to do with the common Riemann-Integration. We start by defining a

Lie-Operator:

(1) 1 2

1 2

...
n

n

D
z z z

θ θ θ
∂ ∂ ∂

= + +
∂ ∂ ∂

This operator is a linear differential operator, where the functions θ1 to θn may depend on all

parameters z1 to zn as long as the function can be expanded into a converging power series.

The operator can be applied on a function f, which must fulfil the same criterion. A multiple

application of the Lie-Operator on the function f can be written like this:

(2)

2

1

()

()n n

D f D Df

D f D D f
−

=

=

In the next step we will define Lie-Series L(z,t) by using the Lie-Operator:

(3) .(,) ()t DL z t e f z=

By expanding the e-function into a Taylor-series we get:

(4)
0

(,) ()
!

i
i

i

t
L z t D f z

i

∞

=

=∑

(5)
2

2(,) () . () () ...
2!

t
L z t f z t Df z D f z= + + +

Note that the Lie-Series can also depend on more than one parameter z like the Lie-Operator.

Now we are ready to have a look at systems of differential equations. The Lie-Integration

method only works on systems of first order differential equations. All systems with higher

 6

orders have to be reduced to a system of first order differential equations. Let’s have a closer

look at a system of first order differential equations:

(6) 1 2(, ,...)i
i n

dz
z z z

dt
θ=

with following initial conditions:

(7) (0)
i i

z t ξ= =

These initial conditions are for time t=0, but you can modify them easily all other times. Now

we are going to use the Lie-Operator in following form:

(8) 1 2

1

(, ,...,)
n

i n

i i

D θ ξ ξ ξ
ξ=

∂
=

∂
∑

The solution of the differential equation system (6) with the initial condition (7) can be

written as:

(9) tD

i i
z e ξ=

You can prove this relation by using the Vertauschungssatz of Lie-series and differentiating.

A detailed proof can be found in “Chaos and Stability in Planetary Systems” by R. Dvorak, F.

Freistetter and J. Kurths
iii

. It is more useful for numerical applications to expand the right-

hand side of relation (9) into a Taylor-series:

(10)
2 3

2 3. ...
2! 3!

i i i i i

t t
z t D D Dξ ξ ξ ξ= + + + +

 7

2.3 Application of the Lie-Integration method on the 2-body and

the n-body problem

This work has already been done by A. Hanslmeier and R. Dvorak when developing the OLI

in 1983. I’ll briefly summarize their paper which is based on the work of W. Gröbner
iv

 from

1967.

First we will do a short review of the 2-body problem. The equations of motion for this

problem written in relative coordinates are:

(11)
3

0
r

r
r

+ =ɺɺ

Due to the fact that the Lie-Integration method only works on systems of first order

differential equations, we must separate the system (11) into:

(12)

1

23

r u

r
u

r

θ

θ

= =

= − =

ɺ

ɺ

Now we are able to define the Kepler-Operator:

(13)
3

r
D u

r ur

∂ ∂
= −

∂ ∂

(14)

1 1

2 2

3 3

; ;r u r r

ξ η

ξ η ρ

ξ η

   
   

= = = =   
   
   

ɺ

(15)
3

3
1

i
i

i i i

D
ξ

η
ξ ρ η=

 ∂ ∂
= − 

∂ ∂ 
∑

 8

By introducing new variables (14) we can also write the Kepler-Operator in a different form

(15). The solution of this problem can be calculated by using the Kepler-Operator as Lie-

Operator and solving it with the Lie-Integration method:

(16)
(,) (0)

(,) (0)

tD

i i

tD

i i

L t e t

L t e t

ξ ξ

η η

= =

= =

In the next step you must find a recurrence formula for the multiple application of the Kepler-

Operator (Lie-Operator) on these variables (initial conditions). I am skipping this long

procedure by referring to the paper mentioned above and show you the final result:

(17)
2

3 2

0

2n
n v n v

i i

v

n
D D D

v
ξ ρ ξ

−
− − −

=

− 
= −  

 
∑

Note that you can get nearly the same formula for ηi because of:

(18)
i i

Dξ η=

Now we can use the methods we learned by solving the 2-body problem to find a numerical

solution for general n-body problem. Therefore we start again with the equation of motion:

(19)
3

1

1,2,...,
n

j i

i j

j
j ij i

x x
x m i n

x x=
≠

−
= =

−
∑ɺɺ

We reduce this system of differential equations with the same substitution as we have done in

the 2-body problem. After defining a Lie-Operator for the 3-body problem, introducing new

variables and finding a recurrence formula for 3-body case, it is comparably simple to

generalize it for the n-body-problem:

(20)

2 2

0 0

(,) (, 2) (, 2)

1,..., 1,...,

a a
n k v v

i i k lk i l lk i

v v

a v a v
T k a D m D T k a v m D T k a v

v v

l n k n l k

ξ
− −

= =

− −   
= = − Φ − − − Φ − −   

   

= = ≠

∑ ∑

 9

All these thoughts and calculations lead to a formalism which enables us to evaluate all terms

(Ti(k,a)) of the Lie-series. The OLI was developed based on these mathematics and of course

the NLI uses exactly the same algorithms to calculate the movement of planets and asteroids.

2.4 Advantages of the Lie-Integration method

The Lie-Integration method holds a couple of very useful advantages. It has a very high

accuracy depending on the number of Lie-terms calculated. Furthermore it can operate with a

large step length which makes it very fast. In addition to that the step length is flexible and

can be adapted to the situation. So in case of problems of celestial dynamics it can calculate

very fast when the planets are far away but it can also handle close encounters with a high

accuracy by temporarily reducing the step length without loosing much calculation time.

 10

3. PROGRAMMING LANGUAGE “DELPHI6”

3.1 Programming environment

The Borland Delphi 6.0 Personal Edition with Service Pack 2 has been used to develop the

NLI. The programming editor has a visual surface to create program windows and other

common tools and components by drawing (drag and drop) them up. Furthermore there is also

a text editor to write the source code to control these components. A Compiler and a useful

help are included too.

Fig. 2: Delphi6 programming environment

 11

3.2 Features of Delphi6

First of all I’ve got to mention that programming language Delphi could also be called

“Visual Pascal”, because the syntax is of Delphi is based on Pascal like Visual C++ is based

on C. Delphi6 is equipped with some very useful features: There is for example a 80-bit

floating point variable called “extended” which covers values from 3.6 10
-4951

 to 1.1 10
4932

.

Delphi6 can also handle dynamic arrays. This is one of the most important improvements

compared to its predecessors and I’ve used this feature very often for the NLI to define the

dimension of an array on runtime. Furthermore Delphi6 translates the source code directly

into Assembler and not like many other programming editors first into C and then into

Assembler. This is very important for the runtime speed of programs and fastness is essential

especially for the usage of our program. In addition to that Delphi6 uses elements of object

orientated programming languages as well as elements for structured programming languages.

You can’t say that Delphi can be classified as either the one or the other. This mixture gives

you the opportunity to use the best features and elements of both types of programming

languages. The graphical surface is very useful for developing user-friendly programs. Plenty

of prefabricated components and libraries for all kinds of applications are another advantage

of Delphi6. I’ve used some of them for the NLI, mainly for the graphical surface and the 3D-

animations.

 12

3.3 Syntax

I’ve already mentioned that the syntax strongly resembles Pascal. Now I am going more into

detail by showing you an example source code in Fortran77 (the programming language of

the OLI) and in Delphi6 of the same simple program. The following program (in both

languages) can calculate prime numbers up to a certain number. I’ve chosen a very slow but

simple algorithm for this showpiece program.

In Fortran77

integer a,i,e,max

 print*,'höchste Zahl eingeben'

 read*,max

 open(unit=11,file='ergebnis.txt',status='unknown')

 do 100 i=2,max

 a=0

 do 200 e=2,i-1

 if (MOD(i,e)==0) then

 a=a+1

 end if

200 continue

 if (a==0) then

 write(11,*) i

 print*, i

 end if

100 continue

 close(11)

 stop

 end

 13

In Delphi6

procedure TForm1.Button1Click(Sender: TObject);

Var F:Textfile;

 i,e,a:integer;

begin

assignfile(F,'ergebnis.txt');

rewrite(F);

for i:=2 to spinedit1.Value do

begin

a:=0;

for e:=2 to i-1 do

begin

if (i mod e)=0

then

inc(a);

end;

if a=0

then

begin

writeln(F,inttostr(i));

listbox1.Items.Add(inttostr(i));

end;

end;

closefile(F);

end;

Some parts of the source code look similar, others don’t. Writing to a file in Fortran77

consists of basically 3 commands:

open(unit=number,file=’filename’,status=’unknown’) C opens file

write(number,*) variable C writes a line

close(number) C closes file

While in Delphi6 you’ve to use 4 commands:

 14

assignfile(identifier,filename); // opens file

rewrite(identifier); //sets file ready to write(overwrite)

writeln(identifier,variable); //writes a line

closefile(identifier); //closes file

Let’s have a look at another example: a for-loop in Fortran77 must be written like this:

do number variable=startvalue, stopvalue C define and begin loop

COMMANDOS C commandos that are whished to be done in the loop

number continue C end loop

The same code lines in Delphi6 have to look like this:

for variable:=startvalue to stopvalue do // define loop

begin // begin bracket

COMMANDOS // commandos that are whished to be done in the loop

end; // end bracket

Let’s compare an If-Case in Fortran77:

if (logical comparison) then C make a comparison: if true then continue

COMMANDOS C commandos that are whished to be done in this case

else C if comparison is false then continue here

COMMANDOS C commandos that are whished to be done in this case

end if C comparison complete

with one in Delphi6:

if (logical comparison) // C make a comparison

then // if comparison is true then continue

begin // begin bracket

COMMANDOS // commandos that are whished to be done in this case

end // end bracket

else // if comparison is false then continue here

 15

begin // begin bracket

COMMANDOS // commandos that are whished to be done in this case

end; // end bracket

After these basic syntax elements I’ve to tell you some more differences between Delphi6 and

Fortran77. Firstly variables must be declared at the beginning of a program or a procedure in

Delphi6, while in Fortran77 they may be declared everywhere in the source code.

Furthermore every code line has to be ended by a semicolon in Delphi6. This doesn’t exist in

Fortran77. There are many more differences and characteristics of both programming

languages, but to mention and explain them all would blast the volume of this paper. I hope

this overview has given you a small insight into the syntax of Delphi6. I am closing this

chapter with a comparison of the program surface of the prime number program above in

Fortran77 and Delphi6.

Fig. 3: the appearance of the running prime number program in Fortran77

 16

Fig. 4: the appearance of the running prime number program in Delphi6

 17

4. MODIFICATIONS

In this part of the paper I will write about my modifications on the core program (the part that

I’ve translated from the OLI). I will treat the program elements I’ve added to the original

program in the next chapter. Due to the fact that the OLI all over all is a very efficient and

well working program, I’ve avoided large changes in the mathematical functions. Most

modification, I have done on the core program, were intended to make it more flexible. But I

have also tried to improve the speed of the program by creating an option to turn off features

which aren’t always needed for the calculations. The number of objects (massive and mass

less) has been limited in the OLI. The only possibility to change this limit has been to edit an

include file and recompile the program. This isn’t any longer necessary with the NLI, because

of using dynamical arrays. In the NLI almost all parameters of the integrator are editable

while running the program, even some parameters that couldn’t be changed in the OLI

without editing the source code of the program. For example: To indicate that an object gets

very instable you can use its eccentricity. Of course it’s not a perfect instability indicator, but

this orbit parameters must increase up to greater or equal to1 to get an eject. Furthermore a

high eccentricity also increases the probability of close encounters and that cause ejects too.

Another argument to exclude high eccentric objects (as long as they are mass less) from

calculations is that their extreme orbits decrease the step length of the integrator and slow it

down. The limit of eccentricity in the OLI has been 0.5. This seems to be quite low, but

simulations have shown that it is high enough (see Fig.5).

Fig. 5: number of objects left after a long-time calculation of the restricted three-body-

problem; it shows little difference between the result of escape-time and emax of 0.5.

 18

But with respect to the discovery of many exoplanets during the last decade I must admit that

a fix limit of eccentricity of 0.5 is no longer reasonable. 20 years ago nobody was expecting

that we will discover massive planets with an eccentricity greater than 0.5, but now there are

several known planets with stable orbits and an eccentricity much greater than 0.5. These

mostly very massive planets can force other objects in the systems on orbits with a

comparable high eccentricity.

Fig. 6: number of known exoplanets ordered by eccentricity.

Increasing the limit up to a higher value isn’t very practicable either, because most solar

systems have planets with lower eccentricity and this would only lengthen the calculation

time for these systems. So I have chosen to make the maximal eccentricity editable. Now the

user is able to adjust this criterion for his cases. Other situations when you are allowed to

exclude objects from the calculation are close-encounters. Within a certain distance from the

planet a passing asteroid will either be captured or ejected. To investigate this case we have to

ask ourselves the question, when the gravitational influence of a planet dominates the one of

its host star. The Hill-Radius
v
 has been defined for this situation:

(21) 3.(1)
3

Hill

m
R a e

M
≈ −

 19

In formula (21) the variable “a” is the semi-major axis of the smaller body (planet) and “e” its

eccentricity. “M” stands for the mass of the larger body (star) and the variable “m” is the mass

of the smaller body. Note that the formula for the Hill Radius can’t be derived rigorously.

Despite it works fine as long as the mass of the third object is much less than the other two

masses. For my calculations I’ve replaced the term a.(1-e) by the distance star-planet. The

arguments to exclude object that are closer than a certain (in the NLI editable) fraction of the

Hill-Radius to a planet are the same as for the eccentricity criterion, but here I would put a

little more focus on the step length argument. In addition to these modifications I’ve also

created the possibility to turn off or on several features of the integrator. For example you

may disable that it puts out the heliocentric coordinates into a file, when you know that you

only need the orbit elements, because writing to the hard disc takes some time. Furthermore

I’ve made some minor improvements in the source code to speed the integrator up a little. In

spite of all these modifications the largest part of the core source code of OLI is still the same

in NLI.

 20

5. PROGRAM ELEMENTS

In this chapter I will give an overview of the functions and the how-to-use of the program

elements I’ve added to the integrator. Each of the following sub-chapters will treat a window

of the program.

5.1 Main menu

The main menu is the part of the program which controls the integrator. It consists of five

submenus, the large “calculate”-button and a menu bar.

Fig. 7: the main menu of the Lie-Integrator

There are 8 “text edits” and 3 “radio buttons” in the submenu “objects”. With the “radio

buttons” you can select if you would like to enter orbit elements, heliocentric coordinates or

 21

barycentric coordinates. The labels of the “text edits” will change automatically. I’m going to

use following abbreviations in the program for the orbit elements (and masses):

abbreviation full name

a semi-major axis

e eccentricity

i inclination

ω argument of perihelion

Ω longitude of ascending node

M mean anomaly

m mass

Tab. 1: abbreviations of orbit elements

You can enter the orbit elements or the coordinates and the mass and name of the object you

intend to add into the text edits. After this you only have to click the button “add” and your

object will be displayed in one of the two “list boxes”. The upper “list box” is appointed to

massive objects and in the other one only mass less objects will be displayed. Furthermore

you can remove objects for these “list boxes” by clicking on them and using the button

“remove” afterwards. In a similar way you can change your input with the button “edit”. After

clicking “edit” the data of the selected object will be displayed in the “text edits” and you can

confirm your changes by clicking the “ok”-button. Another submenu is called “main

settings”. Into the first “text edit” you can enter the length of the calculation. On the right-

hand side of it there are 3 “radio buttons” to select the unit of the calculation length. You can

chose between days, years and million years. The next “text edit” is labelled with “print step”.

The entered value sets the intervals in days in which the NLI makes a printout into a file.

Beside this “text edit” you can find a “checkbox” named “automatic”. If you enable it by

clicking the integrator will make a printout after every internal step. Note that this step length

is variable. Into the next “text edit” you can enter the number of Lie-terms used for the

calculation. The default setting of 12 has proved as most efficient for the OLI. On the right-

hand side of this “text edit” there is another one to enter the so called “Log EPS”, which

corresponds to accuracy. An average value for this is the default setting of -11. A setting for

low accuracy would be -9 and one for a still reasonable high accuracy would be -13. The next

2 “text edits” are made to put in the minimal step length. Right beside it you can find a

“checkbox” and with it, it’s possible to enable or disable an abort-function if the step length

 22

gets to small. Another “text edit” is dedicated to the parameter “swsum”. The next “text edit”

is labelled as “emax”. There you can enter the maximal allowed eccentricity for mass less

bodies. If the eccentricity gets greater than this value, the object will be excluded from the

calculation. Furthermore you can find another “text edit” below to set the Hill radius criterion.

On the right hand-side of these “text edits” there are 3 “checkboxes” and one “spin edit”.

With these controls you can enable and disable printout files for orbit elements, coordinates or

backup. The “spin edit” gives you the opportunity to set the interval for backups. On the

bottom of this submenu there is a button to reset all parameters in this submenu to default.

Now we will focus on the third submenu, which is called “save path for results”. The first

“text edit” in this submenu has been made to enter the path, where you intend to save your

results. You can change it either by entering the path directly or by using the button below

which opens a common Windows “save dialog”. In this submenu there are three more “text

edits” where you can enter the filenames for orbit elements, coordinates and backups. The

next submenu is labelled as “state of calculation”. You can find two “gauges” there. The first

one is labelled as “recent calculation” and it indicates the progress of the recent calculation.

The other gauge only shows overall progress if there is a queue of calculations (in the scan

mode). The large button labelled with “calculate” is self-explaining. On the top of the main

menu window there is a menu bar, where you can start all the other program features.

5.2 Help system

The second program window we are threatening is the help system. You can start the help in

the program with the menu entry “Help” in the menu bar. The short manual is based on this

part of the paper and explains how to use the program. You can start it with the common short

cut “F1”. Beside this there are two more windows you can start from the help menu: the first

one is called “Report bugs”. It gives you a short description how to report a bug you have

found in the program to me, so that I can fix it. The other one is titled with “About” and only

contains version number and copyright. Let’s focus on the short manual, which can be a real

help if you know how to handle it.

 23

Fig. 8: the short manual for the Lie-Integrator

The short manual looks quite simple and it really is. There is one “list box” on the left, a

“memo field” on the right and below these two objects I have placed a button called “close” to

close this window. By clicking on a topic in the “list box” the corresponding help text will

appear in the “memo field”. As already mentioned, these help texts are based on this chapter

of this paper. This part of the program works in a very simple way. The titles of the topics in

“list box” are as well the filename (without extension) of the corresponding text file with the

help text. So it just loads the right file by using the title you’ve clicked on.

5.3 Scans

For many situations it’s very important to investigate several possibilities which are only

slightly different. For these cases I’ve developed a scan procedure for the Lie-Integrator,

which can be controlled by the scan window.

 24

Fig. 9: the Scans window – scan mode: “mass less testbody”

The scan menu consists of 3 submenus and 3 buttons. In the first submenu which is labelled

“scan mode” you are able to choose between 3 different kinds of scans: “mass less testbody”,

“massive planet” and “inclination of system”. In the first mode there will be a mass less

testbody added to system with variable initial conditions and in the second mode it’s a

massive planet or even star. The third mode is completely different from the other two. You

can select the inclination of a system of exoplanets, so that the masses of the planets are

multiplied with a factor depending on the angle of view. This feature treats a very up-to-date

problem with systems of exoplanets discovered by radial velocity method. The next submenu

is labelled “path” and contains a “text edit”, where the save path of the result files is

displayed. You can change it with the button below, which is labelled “location for save

files”. You find two more buttons below this one. The first one is labelled “calculate” and

starts the calculation of the scan sequence while the other button is called “close”. The last

submenu changes its appearance due to the chosen scan mode.

Fig. 10: submenu from scans window – scan mode: “inclination of system”

 25

In the scan mode “inclination of system” this submenu consist of only two “text edits” and

one “spin edit” (see Fig.10). Into the first “text edit” you must enter the lowest angle you

intend to scan and into the second “text edit” the highest angle for your scan. The “spin edit”

has been made to select the resolution: how many runs shall be made? Note that only angles

greater than 0° and less than or equal to 90° are reasonable. An angle of 90° means that you

see the system edge on and the measured minimal masses are the real masses of the planets.

Fig. 11: submenu from scans window – scan mode: “massive planet”

If you select the mode „massive planet“, the submenu will change completely (Fig.11). Now

it consists of 7 “checkboxes”, 14 “text edits”, 7 “spin edits” and 2 buttons. Each “checkbox”

enables or disables a variable orbit element or variable mass for the additional planet. In the

first “text edit” right of a “checkbox” you must enter the value you intend to start your scan

with. In the next one you shall write the upper border of your scan area in this parameter. If

the “checkbox” isn’t checked, the value in the first “text edit” will be the initial value of this

orbit element for all runs. Finally on the right edge of this submenu there are the “spin edits”.

With these controls you change the resolution (number of runs with different initial values for

this orbit element) of the scan. On the bottom of this submenu you can find two buttons. The

first one is called “resonances” and opens the resonances window, while the other, which is

labelled “habitable zone”, displays the habitable zone window. The functions of these

windows will be explained in the next two sub chapters. If you select the scan mode “mass

less testbody”, you will see a very similar submenu (Fig.9). There is only one difference:

 26

Instead of the possibility to select the mass of the object, which is of course in this case zero,

you will find a “spin edit” that is entitled with “objects per run” and a “checkbox” with “all”

written on it. Because mass less objects don’t influence each other by gravity you can

calculate more than one object with different initial values per run. This “text edit” gives you

the opportunity to choose how many you intend to calculate per run. The OLI has shown that

the optimal number of objects in total per run is between 10 and 20. But you can also use the

“checkbox” “all” and calculate all mass less testbodies in only one run.

Finally we are going to have a look on the orbit elements. They are all listed (with

abbreviations) in Table 1, but what are they? The semi-major axis and the eccentricity are

defining the shape of the orbit ellipse. You can calculate the eccentricity from the two semi

axis of the ellipse:

(22)
2

2
1

b
e

a
= −

Fig. 12: an orbit ellipse viewed from above

The other 4 orbit elements are all angles and define the alignment of the ellipse in 3-

dimensional space and the position of the planet on it. The inclination defines the gradient of

the ellipse to a fix plane in space. The longitude of the ascending node refers to a fix point

(direction) on this plane and the cutting point of the orbit plan. The argument of perihelion

counts the angle from this cutting point to the point where the ellipse gets closest to one of its

focal points. Now we have defined the alignment of the ellipse in space. Finally we have the

 27

angle from the perihelion to the recent position of the planet. It is called the true anomaly (v)

and can be transformed into the mean anomaly (M) with these formulas:

(23)
1

tan() tan().
2 2 1

v E e

e

+
=

−

(24) 0 0.sin() () .()E e E M t n t t− = + −

Fig. 13: an orbit ellipse in 3-dimensional space

5.4 Resonances

Investigating resonances is a very common work in Astrodynamics. Resonances are important

in our own solar system (e.g. main asteroid belt and Kuiper belt) as well as in other

multipanetary systems (in Classes Ia and Ib due to the classification of S. Ferraz-Mello
vi

).

Because I intend to make the NLI as user-friendly as possible, I have created a feature which

calculates resonances for scientific users so that they don’t have to do side-calculations.

 28

Fig. 14: the resonances window

The window only contains 2 “spin edits”, 2 “text edits”, 3 buttons and a couple of “labels”.

With the 2 “spin edits” you are able to choose the resonance ratio. Furthermore you can enter

the semi-major axis of the object you want to have a resonance with into the first “text edit”.

The last “text edit” is designated to the width of resonance. In most cases it isn’t reasonable to

investigate the exact resonance only. So you have to define a small area around it to see the

structure of the resonance. The first button is titled “pre-calculate” and when clicking it

calculates the resonance but only makes an output into the bottommost “label”. The button

“accept” also calculates the resonance but closes the window and enters the result into the

scan window. You can simply close this window with the last button.

5.5 Habitable Zone

The most interesting area around other stars is the habitable zone. Only within a certain

distance from the host star a planet can support life (with a couple of other fitting parameters)

comparable to ours. I’ve created this window with the same motivation as the window above.

 29

Fig. 15: the habitable zone window

The habitable zone window contains 6 “text edits”, 3 buttons and a couple of “labels”. The

first “text edit” is reserved for the surface temperature of the host star in Kelvin. Into the next

one you have to enter the radius of the star in solar radii. Below this “text edit” there is

another one to enter the albedo of the planet. The fourth “text edit” is labelled “atmosphere

factor” where you have to enter a constant (see formula (22)) which describes the heat storing

of the planets atmosphere. Below this “text edit” you can find two more of them. Into the first

one you have to enter the minimal average surface temperature of the planet and into the other

one the maximal average surface temperature of the planet. All values in these “text edits”

(except the bottommost two) are the standard values of Earth and Sun. The average surface

temperature of is about 288K. The 3 buttons below fulfil the same functions as in the previous

window. Let’s have a closer look how the habitable zone is calculated. In this program I’m

using a formula from J. Schneider
vii

, which I’ve slightly altered:

(25) * *1
[] 1 1

2
atm

p

R T
a AU A F

R T

 
= − +   

 ⊙

The formula I’ve found doesn’t contain the term with Fatm (atmosphere factor) and leads for a

non-zero albedo to completely wrong results for Earth. So I’ve added the atmosphere factor to

this formula to get for a planetary temperature (Tp) of 288K a distance (a) of 1AU. An

atmosphere factor of zero describes a planet without atmosphere but at a value of 0.81 it

 30

simulates an Earth-like atmosphere. The other variables in this formula are radius of Sun

(R⊙), radius of the host star (R*) and the surface temperature of the host star (T*).

5.6 Tables

Up to now I’ve only described features of the program which helps you to calculate problems,

but what are we going to do with the results? For this reason the NLI contains several

different program elements to evaluate the results of previous calculations. The first and most

simple of them is the table window. Here you can extracts the data you need from the result

files and get it displayed in tables, which you can save for further external evaluation. In

addition to that there is also a function, which can find extreme values in the results. Let’s

have a look on this window:

 31

Fig. 16: the table window

You can see 2 submenus and each of them contains 2 “list box” and 4 buttons labelled with

different arrows. Furthermore there is a long “label” and a “spin edit” below them. You can

also find 6 buttons and a huge “memo field” on this window. The first submenu has been

developed to select the orbit elements and parameters that you would like to display. By

clicking on one you can move it into the “chosen” “list box” or back by using one of the 4

buttons. Their meaning is explained here in Table 2 and this convention is also used in other

parts of the program:

 32

symbol meaning

> move the selected element into the “list box” on the right-hand side

>> move all elements into the “list box” on the right-hand side

< move the selected element into the “list box” on the left-hand side

<< move all elements into the “list box” on the left-hand side

Tab. 2: arrow symbols and their meaning

The other submenu works the same way. The only difference is that you have to choose the

objects for which you intend to output their elements. The long “label” below the first

submenu contains the path of the file you have selected with the first button that is labelled

“select result file”. The “spin edit on the right edge of this window has been placed there to

choose the number of right-of-comma-positions you intend to be shown in the table. By

clicking the second button in the row the program will display a table due to the selected

parameters above in the “memo field”. The next two buttons will put out a labelled list of

extreme values of the orbit elements into the “memo field”. It is possible to save the content

of the “memo field” to a text file with the button that is entitled with “save”. Finally the

button “close window” does that what is written on it.

5.7 Diagrams

Results are usually display in diagrams and so I’ve decided to equip the program with a tool

that can create line diagrams out of a result file. You can chose if you like to open a single

“normal file” or a “scan file”. This tool creates a saveable diagram with labelled axis.

 33

Fig. 17: the diagrams window- normal file mode

The diagram window consists of a submenu that changes its appearance due to the selected

result file type. In addition to that you can find 6 buttons and a “paint box”. You can select a

normal result file with the button “select normal file”, but you can also work with a scan file

by clicking the button “select scan file”. The third button opens the colour palette window.

You are able to draw a diagram by clicking the next button that is labelled “draw diagram”.

The button “save graphic” saves the diagram in the “paint box” as a bitmap. To close this

window you can use the button “close”. Let’s have a view on the submenu in case you’ve

chosen a normal file. It consists of 2 “list boxes”, 4 “text edits” and a “checkbox” (Fig.17).

The first “list box” contains all orbit elements and you select the one intend to display. In the

other “list box” all objects are listed. You can select as many of them as you like by marking

them by clicking. The first 2 “text boxes” are made to enter the borders of the visible y-axis.

The displayed time interval can be selected by entering values into the other 2 “text boxes”.

Finally the “checkbox” that is labelled “show minor ticks” enables additional tick marks in

the diagram.

 34

Fig. 18: the diagrams window- scan file mode

On the other hand you can select to evaluate a scan file. The submenu (see Fig.18) looks quite

different and contains 3 “combo boxes”, 1 “list box”, 5 “text edits”, 1 “check box” and a

button labelled “stable ele.”, which opens the window stable elements. You can select the

parameters displayed on the y-axis with the first 2 “combo boxes” and the “list box”. The first

“combo box” contains the so called “feature” of an orbit element. These features are listed in

table 3 here:

maximum

minimum

time until maximum

time until minimum

time until greater than a limit

final value

Tab. 3: features of orbit elements that can be selected

Of course the same list of features is used other parts of the program. The next “combo box”

gives you the opportunity to select the orbit element and with the “list box” you can chose the

objects. You can define the borders of the visible area of the y-axis with the first 2 “text

edits”. The third “text edit” is only needed in case you have selected the feature “time until

greater than a limit”. In this case you can enter the limit value into it. For the x-axis you must

 35

select a parameter that has been variable during the scan. This can be done with the third

“combo box” and the border between the diagram line is displayed can be defined with the

last 2 “text edits”. Finally the “checkbox” remains to be explained, but it has the same

function as in the case you’ve selected a normal file.

5.8 Stable elements

The program must know when it draws a diagram or stability map from a scan-file on what

values the non-variable parameters are held. For this problem I’ve created the stable elements

window, where you can select these values.

Fig. 19: the stable elements window

This window contains 7 labelled “spin edits” and a button to close this window again. With

these “spin edits” you can set the counter position for the elements that have been variable

during the scan, but are not displayed on an axis in the diagram. Reasonable values are from

one up to the resolution of the orbit element. In case you’ve entered a not allowed value it will

either take 1 or the highest reasonable value for this element.

 36

5.9 Colour palette

It doesn’t only look boring to have a monochromatic diagram; no it can even cause problems,

because you will mix up the graphs if they cross over. So I’ve programmed a Colour palette to

give the user the opportunity to select the colours of the individual curves. Furthermore I use

this window in other parts of the program, where it’s reasonable that the user can select

colours. The colour palette is used to colour a stability map or the objects in the 3D-

animation.

Fig. 20: the colour palette

This window consists of a “list box”, 5 buttons and a “shape”. The last object is usually used

to display simple geometric figures, like in this case a rectangle. But it can also be coloured in

any available 32bit colour and a “shape” can also react on an “on click-event”. By clicking

into the “list box” the “shape” will get the selected colour. When you click on the button “add

colour” a simple colour dialog as known from programs like “Paint” will show up and you are

able to choose a colour which will be added to the “list box”. You can remove a colour from

the “list box” by first clicking on the colour you want to get rid of and then clicking on the

button which is labelled “remove colour”. With the buttons “move up” and “move down” you

can sort the “list box”. The final button “close” closes the window so that you can continue

with your work. Note that all colours are display in the “list box” in their hexadecimal RGB

(red-green-blue) code (or better BGR as you can read in Fig.20).

 37

5.10 Stability maps

A stability map is a very common way to display astrodynamical data of a solar system,

because it contains as much information as a three dimensional diagram. On both axis you can

display different variable orbit elements from a scan of a system while another parameter can

be displayed at each point in a different colour.

Fig. 21: the stability map window

This window contains of 4 submenus, a “paint box” and 4 buttons. The first of these buttons

is labelled “select file” and with it you can of a result file from a scan. The next button draws

a stability map with the parameter selected in the submenus to the “paint box”. You can save

it to a bitmap with the third button that is labelled “save stability map”. The last button closes

this window. Let’s have a look on the submenus. The first submenu is entitled with “x-axis”

and contains a “combo box” and two “text edits”. With the “combo box” you can select a

variable orbit element you want to display on the axis. The borders of the displayed area can

be set with the two “text edits”. The next submenu is entitled “y-axis” and is completely equal

to the previous. Colouration is the title of the submenu below these two and it consists of 3

“combo boxes”, 3 “text edits” and one image. The 3 “combo boxes” are similar to those in

diagram window in the “scan file” mode. You can select a feature of an orbit element (also

 38

selectable) of an object. The only difference is that you have a “combo box” instead of a “list

box” like in the diagram window. The limit value for the feature “time until greater than a

limit” can be entered into the uppermost “text edit”. The other “text edits” are placed there to

enter the borders of colouration. Finally there is the image on the bottom of this submenu. It is

coloured in the same way the stability map is going to be coloured. By clicking on it, the

window colouration will open where you can edit the colouration. The last submenu is

labelled “settings” and contains 3 “combo boxes” and a button that opens the stable elements

window. The first “combo box” will show additional tick marks on the stability map if it’s

enabled. To show a legend for the colouration you have to click the second “combo box”. The

last “combo box” enables an interpolation mode for the stability map. In Fig.21 you can see

the same stability map as in Fig.22, where the interpolation mode is disabled. The resolution

is 5 times 5. The first one seems to be more elegant but mimics an illusory accuracy.

Fig. 22: a stability map from the NLI without interpolation

 39

5.11 Colouration

I’ve developed a possibility to edit the colouration of a stability map. There are 4 different

colouration modes, so that almost every user should be satisfied.

Fig. 23: the colouration window

There is a “radio button” and a submenu for each of the 4 colouration modes. In addition to

that you can find a button to close this window on its bottom. By clicking on one of the “radio

buttons” you can select the colouration mode. The first colouration mode is called “spectral

mode” and you can chose between 2 sub-modes which are the same just mirrored. The title

refers to the appearance of the mode, because it looks like a spectrum (see Fig.21). In the

submenu for the second mode, that is called “two colour” you can find 2 “shapes”. By

clicking on them you can change their colour with a colour dialog. The colouration makes an

RGB-interpolation between those two colours (see Fig.24).

 40

Fig. 24: colouration mode – two colour

The next mode is called “RGB mode” and its submenu contains 2 “radio buttons”, 3 “check

boxes”, 6 “text edits” and another submenu that consists of 6 “radio buttons”. With the first 2

“radio buttons” you can select the sub-mode: the first mode “mixed” is similar to the “two

colour” mode, but the other mode draws a sequence of RGB colours with different intensity.

You can enable and disable single colours (red, green or blue) with the 3 “check boxes”. With

the “radio buttons” in the other submenu you can change the order of the sequence. In the 6

“text edits” you can enter the intervals for the main colours. You can see an example of this

mode here (Fig.25):

Fig. 25: colouration mode – RGB mode – sequencal

The last colouration mode is quiet simple. It loads a colour sequence from the colour palette,

we have already treated above. There is an example down here in Fig.26.

Fig. 26: colouration mode –colour sequence

5.12 3D-animations

The most impressing feature of the NLI is the ability to show a 3D-animation of the planets

movement. But to get a proper animation you will have to do a small set-up which can be

done in this window.

 41

Fig. 27: the 3D-animation window

The 3D-animation window consists of 5 submenus, 3 buttons and one “check box”, that

enables the users to decide if he wants to see the animation in full screen mode or not. With

the first submenu that is labelled “mode” you can select the mode. It will be done

automatically when you select a file with the first of the 3 buttons. The button on the right

edge closes the window, while by clicking on the button in the middle the animation will start.

There is another submenu that is labelled “time interval” and contains 3 “text edits”. Into the

first 2 of them you can enter the time interval you want to get displayed in the animation. The

other “text edit” has been placed there to enter the conversion factor for real time and

simulation time. The submenu below is titled with “use rotating coordinate system” and

consists of a “check box” and a “combo box”. With the “check box” you can enable this

feature and with the “combo box” you can select the object which shall be stable in the

rotating coordinate system. This feature is very useful to display horseshoe orbits, Trojans and

orbits of exchange planets. The submenu in upper right part is called “colouration”. In it there

 42

are 3 “radio buttons”, 3 “shapes”, 2 “spin edits” and a button to edit the colour palette. You

can choose between the standard colouration, a colouration for object types and the colour

palette by clicking on the “radio buttons”. The first mode uses a predefined list of colours that

resembles the colours of the object in our system sorted by semi-major axis. The second mode

paints objects up to a certain index with one colour and then up to another index with another

colour and the rest with a third colour. You can set the border indexes with the two “spin

edits”. The three colours can be change by clicking on the “shapes”. Finally the last mode

uses the colours from the colour palette. The last submenu is labelled with “visible objects”

and in it there are 3 “list boxes”, 8 buttons and one “text edit”. After you have selected a file a

list of all objects of it will appear in the most left “list box”. Those objects you intend to see in

the animation must be moved into the second “list box” with the 4 arrow buttons. The third

“list box” contains the radii of the visible objects in Jupiter Radii. You can add a radius by

entering a value into the “text edit” and clicking the “add”-button. With the next button you

can remove an item from the radii-“list box”. Because the uppermost radius in the “list box” is

assorted with the first object in the “list box” that is labelled with “visible objects” I’ve

created two more buttons to change the order of the radii list. Note that the default value in the

“text edit” is the radius of our Sun in Jupiter Radii.

5.13 3D-window

After you’ve clicked on the “start”-button in the 3D-animation window the 3D-window will

appear. The 3D-animation here are mainly calculated on the computer’s graphic card and uses

OpenGL, because it’s better implemented into the program language and there are many units

(would be called classes in C) online. These facts make it comparable easy to develop a 3D-

surface in Delphi. I’m using following units that are not part of the standard package of

Delphi6: GL, GLu, GLext, TGA2, CgWindow, CgUtils, CgTypes, CgGeometry, CgLight,

DotWindow, DotUtils, DotVideo, Glut. Despite so many different units I made the 3D

animation quiet simple: all objects (stars, planets and asteroids) are spheres (or points). You

can “fly” around by pressing some keys on the keyboard and I’ve only implemented one light

source on the position of the host star. I’ve also developed a possibility to capture a video

from the screen while watching the simulation, because else this feature would be just fun.

 43

Fig. 28: the 3D-window

This window has a height of 600 pixels and a width of 800 pixels, but 100 pixels in height are

lost for the control panel. So we have a resolution for the 3D-graphic of 800x500 pixels. Let’s

have a look on the control panel first: It contains 4 submenus. The first one is titled “camera”

and contains 3 “labels”. The coordinates (in AU and the origin is the host star) are written on

the uppermost “label”. Furthermore you can see the angle of view in the second “label” and

the zoom factor in the last one. The second submenu is labelled “imaging” and contains 3

“labels” too. The first one gives you the recent frame rate in frames per second. The next

“label” contains the number ob visible objects and the last one shows if the background stars

are enabled. The next submenu, which also contains 3 “labels”, is called “time”. The

uppermost “label” gives us the recent time in the simulation. The “label” below shows us the

time interval for this simulation and on the last one you can read the recent conversion rate of

real time and simulation time. The last submenu is different and it contains one button and

two “labels”. If you click on the button a menu will appear that asks you where to save the

video. After this another menu will become visible and there you can make some settings for

the .avi-video. Then the program will start recording at the current FPS-rate visible in the

 44

right “label” and the number of frames that has been recorded yet are written into the other

“label”. The process can be stopped by clicking on the button again. Although I’ve explained

all visible features of this window one questions remains: “How can I fly around there?” This

is controlled by the keyboard and the mouse. You can move at two different speeds in 6

directions and rotate around 3 angles. Furthermore you can control the time and recording of

the video also by keyboard. The next table will give you a list of the shortcuts in this window:

key / mouse move action

Click right mouse button

and move up/down

moves view angle up and down

Click right mouse button

and move left/right

moves view angle left and right

Q rotates counter-clockwise

W rotates clockwise

arrow up moves camera forwards

arrow down moves camera backwards

arrow left moves camera left

arrow right moves camera right

page up moves camera upwards

page down moves camera downwards

Shift goes to higher speed while pressed

H stops time

R reverses time

F increases time rate (faster)

S decreases time rate (slower)

B enables/disables background stars

I zooms in

O zooms out

M starts/stops capturing a movie

X increases FPS-rate for movie

Y decreases FPS-rate for movie

Esc closes window

Tab. 4: shortcuts for the 3D-window

 45

5.14 Exoplanets - Calculations

As mentioned before a Keplerian fit to determine the orbit elements is not always valid. So

I’ve decided a feature to check its validity by calculating an artificial radial velocity curve for

exoplanetary systems. You just enter the parameters of the system you intend to investigate

into the main menu and open this window.

Fig. 29: the exoplanets – calculations window

This window is small and simple: into the first submenu you have to enter the resolution of

your calculation. The program looks for the planet with the smallest semi-major axis and

divides its orbit period by the value you have entered into this “text edit”. The next submenu

is designated for the duration of this calculation. I’ve decided to place this “text edit” here to

avoid that the user makes the mistake to start this calculation at such a high resolution over a

million years. This would simply take to much time. The last submenu contains a “text edit”

and a button that is labelled “change path”. Similar to the scan you have to select a path for

this calculation which can be done by clicking on this button and the selected path will appear

in the “text edit”. Finally there are two more buttons on the bottommost edge of this window.

The first one starts a calculation and the other one closes this window.

 46

5.15 Exoplanets - Evaluation

Now we can evaluate the results of the previous calculation. For this I’ve developed another

window, where you can investigate the exoplanetary system in two different ways.

Fig. 30: the exoplanets – evaluation window

This window contains of 2 submenus, a “spin edit” to set the number of visible right-of-

comma positions for the data that will be display in the “memo field” in the lower left corner,

a “paint box” and 6 buttons. The first of these buttons has been placed there to open the result

file of an exoplanet calculation. The other two buttons in the first row start the two evaluation

procedures. In the second row the first button closes this window. The next one which is

labelled “save data” saves the content of the “memo field” to a text file. The last button saves

the diagram from the “paint box” to a bitmap by clicking. The first submenu is titled “radial-

velocity curve – settings” and contains 6 “text edits” and a “check box”. You can define the

time interval that will be displayed with the first two “text edits”. The next two “text edit”

give the values for the borders of the y-axis (radial velocity). The inclination angle which

influences the amplitude of the curve has to be entered into the “text edit”. Into the last “text

 47

edit” there can be the angle of the fix point entered. Finally if you click on the “check box”

there will be an output of into the “memo field” as well as to the “paint box”. The other

submenu is titled “variation of orbit elements – settings”. It consists of 2 “list boxes”. The

first one lists up the first three orbit elements, while the other contains a list of objects in this

system. By starting the evaluation the program will search maxima and minima due to the

selection and output the variation of the orbit elements into the “memo field”.

5.16 Load, Save and Samples

In this sub-chapter I’ll write about some features of the program, that haven’t been mentioned

yet. In the menu bar in the main menu there is also an items titled with “file”. It contains 4

other items: New, Open, Save and Close. The first item deletes everything that has been

entered into the main menu and resets to default values. The second item gives the user the

opportunity to save the data from the main menu to a file, while the next one loads it from a

file. In the order where you can find the .exe of the Lie-Integrator you can also find an order

called samples. I have prepared some sample systems (e.g.: two body problem, restricted 3-

body problem, our solar system …) there and you can load them by clicking on Open. The

last item of course closes the program. There are also some shortcuts for the menu bar. I’ve

decided to keep to the standards and use F1 for Help, Ctrl+N for New, Ctrl+S for Save,

Ctrl+O for Open and finally Ctrl+F4 for Close.

 48

6. CODE SAMPLES

6.1 The main procedure

This procedure is always called when the Lie-Integrator has to calculate the movements of

planets and other objects. This can be in the main menu, in the scan window or in the

exoplanet calculations window. Other important procedures are called in this procedure.

Furthermore all parameters from the graphical surface are loaded into the program. In

addition to that constants are initialized and coefficients are calculated. Moreover the printout

is managed and the main lie series calculation procedure is called here too.

procedure TForm1.Lieberechnen; // declaration of the procedure

var genauig:integer; // declaration of local variables

begin // begins procedure

genauig:=strtoint(edit14.Text); // load accuracy from surface

assignfile(Elemente,pfad+edit19.text); // opens file for orbit elements

rewrite(Elemente); // sets file to write mode

assignfile(Koordinaten,pfad+edit20.text); // opens file for coordinates

rewrite(Koordinaten); // sets file to write mode

autoprt:=checkbox1.checked; // gets a variable from surface

t:=0.0172020989500; // sets constant: Gaussian gravitational constant

param; // loads all parameters from surface and initializes arrays

sicher:=0; // sets counter for backup file to zero

firstrun:=true; // sets variable to initial value

steptosmall:=false; // sets variable to initial value

swprt:=0; // sets variable to initial value

swak:=0; // sets variable to initial value

swakpr:=0; // sets variable to initial value

konst; // calls procedure konst to initialize constants

koeff; // calls procedure koeff to calculate coefficients

if (ini=0) // checks if input is given in orbit elements

then // then

trnsko(2,NK); // transforms orbit elements into heliocentric coordinates

 49

if (ini<2) // checks if input is given in orbit elements(that have already been

transformed) or heliocentric coordinates

then // then

heba; // transforms into barycentric coordinates

mindis; // calculates minimal distance between objects and checks Hill-criterion

print1; // writes file header and initial values

repeat // starts “repeat until” loop

lie_int; // calls „Lie integration“ procedure

mindis; // calculates minimal distance between objects and checks Hill-criterion

swsum:=swsum+swak; // adds current step length to total time count

swprt:=swprt+swak; // adds current step length to print step count

Gauge1.Progress:=round(100*swsum/stp); // shows progress in %

if autoprt=true // checks if automatic print step is selected

then // then

prt:=swprt; // stets print step to recent step length

if roundto(swprt,genauig)=roundto(prt,genauig) // checks if print step is equal

within a certain accuracy to recent print count

then // then

begin // begins bracket

print2; // prints positions of planets into file

swprt:=0; // stets print count back to zero

end; // ends bracket

until (swsum>=stp) or (steptosmall=true); // stops repeat loop if calculation is

complete or step length too small

if swprt<>0 // checks if print count is unequal zero

then // then

Print2; // prints positions of planets into file

closefile(Elemente); // closes file for orbit elements

closefile(Koordinaten); // closes file for coordinates

end; // ends procedure

 50

6.2 Lie Integration procedure

This procedure is really the core of the Lie-Integrator. The lie series are calculated here.

Procedure Tform1.Lie_Int; // declaration of the procedure

var maxddx,maxddt,AB:extended; // declaration of local variables of floating

point type

norckw,nmak,k,l,i,i1,i2,j,j1,j2,ny:integer; // declaration of local variables of

integer type

abbruch:boolean; // declaration of local variables of boolean type

begin // begins procedure

if firstrun=true // checks if the procedure is running the first time

then // then

begin // begin bracket

phi:=0; // sets variable to initial value

sig:=0; // sets variable to initial value

x1:=0; // sets variable to initial value

x2:=0; // sets variable to initial value

x3:=0; // sets variable to initial value

firstrun:=false; // sets variable firstrun to false

end; // end bracket

swmin:=999; // sets variable to initial value

swmax:=0; // sets variable to initial value

maxddx:=0; // sets variable to initial value

maxddt:=0; // sets variable to initial value

norckw:=0; // sets variable to initial value

for k:=1 to nm do // starts “for loop”

for l:=k+1 to nk do // starts “for loop”

begin // begins bracket

R2[l].spalte[k]:=-1/(RCUR[l].spalte[k]*RCUR[l].spalte[k]); // calculates R2

array

DPHI[0].zeile[l].spalte[k]:=1/RCUR[l].spalte[k]*R2[l].spalte[k]; // calculates

DPHI array

ignore[k].spalte[l]:=ignore[l].spalte[k]; // makes ignore array symmetric

 51

diffx1[0].zeile[l].spalte[k]:=DXB1[l].spalte[k]; // copies values into diffx1 array

diffx2[0].zeile[l].spalte[k]:=DXB2[l].spalte[k]; // copies values into diffx2 array

diffx3[0].zeile[l].spalte[k]:=DXB3[l].spalte[k]; // copies values into diffx3 array

end; // ends bracket

for k:=1 to nk do // starts “for loop”

begin // begins bracket

DDX1[1].spalte[k]:=VB1[k]; // copies values into DDX1 array

DDX2[1].spalte[k]:=VB2[k]; // copies values into DDX2 array

DDX3[1].spalte[k]:=VB3[k]; // copies values into DDX3 array

end; // ends bracket

for i:=0 to n2 do // starts “for loop”

begin // begins bracket

i1:=i+1; // defines variable i1

i2:=i+2; // defines variable i2

j1:=i1 div 2; // defines variable j1

j2:=i1-j1; // defines variable j2

for k:=1 to nm do // starts “for loop”

begin // begins bracket

nmak:=nm; // copies value into variable nmak

if (k<=norckw) // checks if variable norckw is greater than loop variable k

then // then

nmak:=norckw; // sets variable

abbruch:=false; // sets variable

for l:=k+1 to nk do // starts “for loop”

begin // begins bracket

if (ignore[l].spalte[k]=true) // checks if bodies are mass less

then // then

abbruch:=true; // sets variable

if abbruch=false // checks if bodies aren’t mass less

then // then

begin // begins bracket

if (i<>n2) // checks loops variable i

then // then

begin // begins bracket

 52

diffx1[i1].zeile[l].spalte[k]:=ddx1[i1].spalte[l]-ddx1[i1].spalte[k]; // calculates

difference

diffx2[i1].zeile[l].spalte[k]:=ddx2[i1].spalte[l]-ddx2[i1].spalte[k]; // calculates

difference

diffx3[i1].zeile[l].spalte[k]:=ddx3[i1].spalte[l]-ddx3[i1].spalte[k]; // calculates

difference

for j:=0 to j1 do // starts “for loop”

begin // begins bracket

sig:=sig+KO2[j].spalte[i]*(diffx1[j1-j].zeile[l].spalte[k]*

diffx1[j2+j].zeile[l].spalte[k]+diffx2[j1-j].zeile[l].spalte[k]*

diffx2[j2+j].zeile[l].spalte[k]+diffx3[j1-j].zeile[l].spalte[k]*

diffx3[j2+j].zeile[l].spalte[k]); // calculates sig

end; // ends bracket

Dsig[i].zeile[l].spalte[k]:=sig; // gives value to Dsig array

for j:=0 to i do // starts “for loop”

phi:=phi+KO1[j].spalte[i]*Dphi[i-j].zeile[l].spalte[k]*

dsig[j].zeile[l].spalte[k]; // calculates phi

dphi[i1].zeile[l].spalte[k]:=R2[l].spalte[k]*phi; // calculates dphi array

end; // ends bracket

for j:=0 to i do // starts “for loop”

begin // begins bracket

AB:=KO[j].spalte[i]*dphi[j].zeile[l].spalte[k]; // calculates AB

x1:=x1-AB*diffx1[i-j].zeile[l].spalte[k]; // calculates x1

x2:=x2-AB*diffx2[i-j].zeile[l].spalte[k]; // calculates x2

x3:=x3-AB*diffx3[i-j].zeile[l].spalte[k]; // calculates x3

end; // ends bracket

DX1[k].spalte[l]:=-x1; // copies value to DX1 array

DX2[k].spalte[l]:=-x2; // copies value to DX2 array

DX3[k].spalte[l]:=-x3; // copies value to DX3 array

DX1[l].spalte[k]:=x1; // copies value to DX1 array

DX2[l].spalte[k]:=x2; // copies value to DX2 array

DX3[l].spalte[k]:=x3; // copies value to DX3 array

sig:=0; // resets variable sig

phi:=0; // resets variable phi

x1:=0; // resets variable x1

 53

x2:=0; // resets variable x2

x3:=0; // resets variable x3

end; // ends bracket

end; // ends bracket

abbruch:=false; // sets variable

for l:=1 to nmak do // starts “for loop”

begin // begins bracket

if (ignore[l].spalte[k]=true) // checks if objects are mass less

then // then

abbruch:=true; // sets variable

if abbruch=false // checks if bodies aren’t mass less

then // then

begin // begins bracket

x1:=x1+m[l]*dx1[l].spalte[k]; // calculates x1

x2:=x2+m[l]*dx2[l].spalte[k]; // calculates x2

x3:=x3+m[l]*dx3[l].spalte[k]; // calculates x3

end; // ends bracket

end; // ends bracket

DDX1[i2].spalte[k]:=x1; // copies value to DDX1 array

DDX2[i2].spalte[k]:=x2; // copies value to DDX2 array

DDX3[i2].spalte[k]:=x3; // copies value to DDX3 array

x1:=0; // resets variable x1

x2:=0; // resets variable x2

x3:=0; // resets variable x3

end; // ends bracket

for k:=nm+1 to nk do // starts “for loop”

begin // begins bracket

for l:=1 to nm do // starts “for loop”

begin // begins bracket

x1:=x1+m[l]*dx1[l].spalte[k]; // calculates x1

x2:=x2+m[l]*dx2[l].spalte[k]; // calculates x2

x3:=x3+m[l]*dx3[l].spalte[k]; // calculates x3

end; // ends bracket

DDX1[i2].spalte[k]:=x1; // copies value to DDX1 array

DDX2[i2].spalte[k]:=x2; // copies value to DDX2 array

 54

DDX3[i2].spalte[k]:=x3; // copies value to DDX3 array

x1:=0; // resets variable x1

x2:=0; // resets variable x2

x3:=0; // resets variable x3

end; // ends bracket

for k:=1 to nk do // starts “for loop”

begin // begins bracket

maxddx:=max(maxddx,max(abs(ddx1[i2].spalte[k]),

max(abs(ddx2[i2].spalte[k]),abs(ddx3[i2].spalte[k])))); // finds the largest

DDX1 and copies it into maxddx

if ((maxddx-maxddt)>=0) // checks if maxddx is greater than or equal to

maxddt

then // then

NY:=I1; // sets variable

maxddt:=maxddx; // sets variable

end; // ends bracket

end; // ends bracket

SW:=Power((EPS*qfac[NY]/Maxddx),(1/NY)); // calculates step length

SWAK:=SW/T; // converts step length into the correct units

if (SWAK<SWMINI) // checks if step length is too small

then // then

begin // begins bracket

SWAK:=SWMINI; // sets step length to minimal step length

if checkbox5.checked=true // checks if program shall abort at a too small step

length

then // then

begin // begins bracket

steptosmall:=true; // sets abort condition to true

MessageDlg('Step small than minimal step! - Program aborted.', mtInformation,

[mbOk], 0); // output info message

end; // ends bracket

end; // ends bracket

SWMIN:=min(SWMIN,SWAK); // redefine SWMIN

SWMAX:=max(SWMAX,SWAK); // redefine SWMAX

if (swsum+swak>stp) // checks if calculation have reached the end

 55

then // then

begin // begins bracket

swakpr:=swak; // secures value of swak

swak:=stp-swsum; // redefines swak

sw:=t*swak; // redefines sw

end; // ends bracket

if (swprt+swak>prt) // checks if there will be a printout

then // then

begin // begins bracket

swakpr:=swak; // secures value of swak

swak:=prt-swprt; // redefines swak

sw:=t*swak; // redefines sw

end; // ends bracket

fac1; // calls procedure fac1

for k:=1 to nk do // starts “for loop”

for j:=1 to n-1 do // starts “for loop”

begin // begins bracket

XB1[k]:=XB1[k]+TT[j]*DDX1[j].spalte[k]; // calculate new barycentric

coordinates

XB2[k]:=XB2[k]+TT[j]*DDX2[j].spalte[k]; // calculate new barycentric

coordinates

XB3[k]:=XB3[k]+TT[j]*DDX3[j].spalte[k]; // calculate new barycentric

coordinates

VB1[k]:=VB1[k]+TT[j]*DDX1[j+1].spalte[k]; // calculate new barycentric

velocities

VB2[k]:=VB2[k]+TT[j]*DDX2[j+1].spalte[k]; // calculate new barycentric

velocities

VB3[k]:=VB3[k]+TT[j]*DDX3[j+1].spalte[k]; // calculate new barycentric

velocities

end; // ends bracket

end; // ends procedure

 56

6.3 Coefficient calculation procedure

The coefficients of the Lie series are calculated in this procedure. It will be only called once at

the beginning of the calculation. This procedure is an essential part of the Lie-Integrator.

procedure Tform1.Koeff; // declaration of the procedure

var i,j,i1,j1:integer; // declaration of local variables

begin // begins procedure

for i:=0 to n-2 do // starts “for loop”

begin // begins bracket

KO[0].spalte[i]:=1; // sets KO array to initial value

KO[i].spalte[i]:=1; // sets KO array to initial value

end; // ends brackets

for i:=2 to n-2 do // starts “for loop”

for j:=1 to i-1 do // starts “for loop”

KO[j].spalte[i]:=KO[j-1].spalte[i-1]+KO[j].spalte[i-1]; // calculates KO array

for i:=0 to n-3 do // starts “for loop”

KO1[i].spalte[i]:=3; // sets values to KO1 array

for i:=0 to n-4 do // starts “for loop”

KO1[0].spalte[i+1]:=KO1[0].spalte[i]+2; // copies values into KO1 array

for i:=2 to n-3 do // starts “for loop”

for j:=1 to i-1 do // starts “for loop”

KO1[j].spalte[i]:=KO1[j-1].spalte[i-1]+KO1[j].spalte[i-1]; // calculates KO1

array

i1:=0; // sets i1 to initial value

j1:=-1; // sets j1 to initial value

i:=0; // sets i to initial value

while i<=n-3 do // starts “while loop”

begin // begins bracket

i1:=i1+1; // increments i1

j1:=j1+2; // increases J1 by 2

for j:=0 to i1-1 do // starts “for loop”

CO2[i].spalte[j]:=KO[i1+j].spalte[j1]; // copies value into CO2 array

i:=i+2; // increases i by 2

 57

end; // ends brackets

j1:=-1; // sets j1 to initial value

i:=1; // sets i to initial value

while i<=n-3 do // starts “while loop”

begin // begins bracket

j1:=j1+1; // starts “for loop”

CO2[i].spalte[0]:=KO[j1+1].spalte[i]; // copies values into CO2 array

CO2[i].spalte[j1+1]:=KO[i].spalte[i]; // copies values into CO2 array

for j:=1 to j1 do // starts “for loop”

CO2[i].spalte[j]:=KO[j1+1+j].spalte[i+1]; // copies values into CO2 array

i:=i+2; // increases i by 2

end; // ends bracket

for j:=0 to n-3 do // starts “for loop”

for i:=0 to ((n-2)div 2) do // starts “for loop”

KO2[i].spalte[j]:=CO2[j].spalte[i]; // copies values into KO2 array

end; // ends procedure

6.4 OpenGL Paint procedure

One also very interesting procedure is the one where the program draws the 3D-graphic on the

window using OpenGL. There the planets are painted and the background stars. Furthermore

the light is set and the calculation procedure to get the positions of all objects is called here

too.

procedure TForm17.FormPaint(Sender: TObject); // declaration of the

procedure

const att: array [0..2] of Single = (0.25, 0, 1/60); // declaration of local

constants

var i:integer; // declaration of local variables of integer type

Q : PGLUQuadric; // declaration of local variables of PGLUQuadric type

begin // begins procedures

if lauf=true // checks if simulations shall run

then // then

begin // begins bracket

 58

rechneposi; // calculates new positions of objects

glClear(GL_COLOR_BUFFER_BIT); // clears the screen

glMatrixMode(GL_MODELVIEW); // sets matrix mode

glLoadIdentity; // loads some GL setup

glRotatef(-cam.pitch, 1, 0, 0); // rotates camera

glRotatef(-cam.yaw, 0, 1, 0); // rotates camera

glRotatef(-cam.rot, 0, 0, 1); // rotates camera

glTranslatef(-cam.pos.x, -cam.pos.y, -cam.pos.z); // moves camera

glLightfv(GL_LIGHT0, GL_POSITION, @LPOS); // puts light to origin (star)

glLightfv(GL_LIGHT1, GL_POSITION, @LPOS); // puts light to origin (star)

glLightfv(GL_LIGHT2, GL_POSITION, @LPOS); // puts light to origin (star)

glLightfv(GL_LIGHT3, GL_POSITION, @LPOS); // puts light to origin (star)

glLightfv(GL_LIGHT4, GL_POSITION, @LPOS); // puts light to origin (star)

glLightfv(GL_LIGHT5, GL_POSITION, @LPOS); // puts light to origin (star)

glenable(GL_CULL_FACE); // enables a feature to save drawing time

glCullFace(GL_BACK); // doesn’t draw backside of objects

Q := gluNewQuadric; // declaration of variable Q

gluQuadricDrawStyle(Q, GLU_FILL); // sets draw style to solid

glPushMatrix(); // prepares painting of objects

glTranslatef(0, 0, 0); // goes to origin

glPointsize(1); // sets points size

glPointParameterfvEXT(GL_DISTANCE_ATTENUATION_EXT, @att); // sets some

point parameters

glPointParameterfEXT(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1); // sets

some point parameters

if bgstars=true // checks if background stars shall be shown

then // then

begin //begins bracket

glColor3f(1, 1, 1); // sets colour of stars to white

glBegin(GL_POINTS); // begins to draw points

for i:=0 to 255 do // starts “for loop”

glVertex3f(starx[i], stary[i], starz[i]); // draws background stars

glEnd; // ends to draw points

end; // end bracket

for i:=0 to nsichtbar-1 do // starts “for loop”

 59

begin // begins bracket

if (ausgabe[i].radius=0) or

(ausgabe[i].d>(314159*ausgabe[i].radius*ausgabe[i].radius)) // checks if

object should be drawn as a point

then // then

begin // begins bracket

glColor3f(ausgabe[i].rot, ausgabe[i].gruen, ausgabe[i].blau); // defines colour

of points

glBegin(GL_POINTS); // begins to draw points

glVertex3f(ausgabe[i].x, ausgabe[i].y, ausgabe[i].z); // draws point at given

position in ausgabe

glEnd; // ends to draw points

end // ends bracket

else // if object should be drawn as a sphere

begin // begins bracket

glColor3f(ausgabe[i].rot, ausgabe[i].gruen, ausgabe[i].blau); // defines colour

of sphere

glTranslatef(ausgabe[i].x,ausgabe[i].y,ausgabe[i].z); // moves to position of

the centre of the sphere given in ausgabe

gluSphere(Q, ausgabe[i].radius, 16, 16); // draws a sphere

glTranslatef(-ausgabe[i].x,-ausgabe[i].y,-ausgabe[i].z); // move back to origin

end; // ends bracket

end; // ends bracket

glPopMatrix(); // resets matrix

glFinish; // ends drawing process

gluDeleteQuadric(Q); // destroys Q

gldisable(GL_CULL_FACE); // ends mode

PageFlip; // outputs to screen

end; // ends bracket

if FRecording // checks if recording is running

then // then

begin // begins bracket

if FVidRec.Snap // checks if recording works fine

then // then

 60

Label11.Caption := Format('Captured %d frames', [FVidRec.NumFrames]) //

outputs number of frames captured yet

else // if there are problems with recording

Label11.Caption := 'Error: couldn''t capture frame!'; // output error message

end; // ends bracket

end; // ends procedure

 61

7. POSSIBLE APPLICATIONS OF THE LIE-INTEGRATOR

I see two main applications for this program: on the one hand numerical long-time integration

of orbits of planets and asteroids in our own solar system or in other systems and on the other

hand stability analysis of exoplanetary systems.

7.1 Long-time numerical integration of orbits

You are able to predict the movement of all planets in our solar system with the Lie-Integrator

for millions of years. But you don’t need to calculate into the far future. By choosing a very

small print step and calculation time you can calculate the orbit of asteroids moving through

our solar system. Some of them could hit Earth and this impact could cause depending on the

size of the object minor up to global catastrophes. It’s very important not only for academic

scientific questions to be able to calculate the movement of objects in an interacting N-body

system like our solar system. Another aspect is that the knowledge about the movement of our

planets can give us information about the formation of our and other solar systems. Long-time

numerical integration helps us to understand the structure of solar systems. Furthermore we

can get also information about the stability of exoplanetary system (Fig.31) and investigate

hypothetical arrangements of planets (Fig.32).

 62

0 5000 10000 15000 20000 25000 30000 35000 40000

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20
 b

 c

 d

e
c
c
e

n
tr

ic
it
y

time [years]

Fig. 31: eccentricity of planets in Gliese 581 for almost 40000 years (calculated with OLI)

0 200000 400000 600000 800000 1000000

0

1

2

3

4

5 planet 1

 planet 2

s
e

m
i-
m

a
jo

r
a

x
is

 [
A

U
]

time [years]

Fig. 32: the semi-major axis of a hypothetical but instable system with exchange orbits for

almost 100000 years (calculated with OLI)

 63

7.2 Stability analysis of exoplanetary systems

We know very little about exoplanetary systems for sure, because most of them have been

detected with the radial-velocity method which doesn’t give any information about the

inclination of this system to our direction of view. Furthermore most orbit elements of the

planets that have been discovered yet are often having a quiet large uncertainty. To narrow the

possible parameters of a detected exoplanetary system we have to exclude some possible

values by calculating the systems future. Most stars are billions of years old and their planets

are as well. We know that a system we are observing now must have been stable (but

dynamical interaction is possible) for this long time and so we except that it will stay stable

for the next millions of years. Else it would be a quiet big random that we are nor observing a

system drifting apart after billions of years remaining stable. To find out which parameters are

reasonable we just calculate the same system over and over again with slightly different initial

values. It’s a simple try and error method. The results are often displayed in stability maps

(Fig.33) and that’s the reason why I’ve included such a feature into the NLI. Another aspect is

the search for additional stable objects in a known exoplanetary system. Due to the fact that

most exoplanets that have been discovered yet have masses of about Jupiter or more you often

search for “mass less” objects with stable orbits in such systems. The “mass less” object could

be an Earth-like planet that has of course a neglectable mass compared to a star and one or

more Jupiter mass planets. These stability analyses help us on our quest to find life outside

our own solar system.

Fig. 33: a stability map, you can see some resonances between 0.9 and 1.2 AU.

 64

7.3 Other imaginable applications

Beside these two main applications some more are possible. For example: you can create

illustrative 3D-animations with one tool of the program. So an educational application is also

possible, because you can show students the movement of planets and their interactions visual

and not only in mathematics. Furthermore the exoplanet tool enables observing astronomers

to check their results of the measurement of exoplanetary orbits. More over the high accuracy

of the Lie-Integrator is also a possibility for Archeoastronomers to calculate the positions of

the planets in our solar system thousands of years ago and compare them with archaeological

discoveries. But they will have to do some side-calculations to project the orbits down to

Earth. Maybe other fields of use will also open for the Lie-Integrator in the future.

 65

8. CONCLUSION

The Lie-Integration is a method to solve differential equations that has been developed by

Sophus Lie more than hundred years ago. You use this method to solve systems of first order

differential equations numerically and the Lie-Integrator applies it on the Newtonian

Gravitation Equations for an interacting n-body system. The mathematics for this has been

done by A. Hanslmeier and R. Dvorak in 1983 and on that foundation they have developed

the first Lie-Integrator for problems of n-body celestial mechanics. Due to the great

advantages of the Lie-Integration method like the flexible step length and the high accuracy I

have decided to create a more modern version of this program. For this task I have chosen

Delphi as my programming language. I tried to fully exploit the possibilities of Delphi and

developed a program that is not only capable to calculate the orbits of planet. It possesses

some very powerful evaluation functions. The NLI can create tables with the needed data out

of the result file as well as displaying elegant and fully labelled diagrams. Furthermore it is

able to draw colourful stability maps that contain as much information as 3-dimensional

diagram about a solar system. A very impression element of the NLI is the 3D-animation. The

evaluation module uses OpenGL based 3D graphics to display a real time simulation of a

solar system that has been previously calculated. You can fly around in a 3-dimensional space

and even record your views. With another tool of the program it’s possible to create artificial

radial-velocity curves of exoplanetary systems. In addition to that you can find also a very

useful program element in the Lie-Integrator to calculate scans in orbits elements. It gives the

user the ability to perform a sequence of calculation with slightly different initial values.

Furthermore the NLI contains a very useful help system and the content of the help files is

based on chapter 5 of this paper. Series of test simulations have shown that this program

works as well as the OLI. I’ve done many runs on the 2-body problem and the restricted 3-

body problem, which have shown the expected results. Of course I have tested all new

features as well. Finally I’ve done a long-time run on our own solar system and it stayed

stable over a million years as expected.

 66

Fig. 34: Our solar system

Beside the elements I’ve added, I’ve also done some modifications on the core code of Lie-

Integrator. The main modifications have made the instability criterion more flexible. You can

now select the maximum eccentrity or the fraction of the Hill-radius when a mass less objects

will be ejected. In addition to that I’ve also done some minor changes in the core code that

increases the flexibility of program so that you can turn on or off not essential features. This

program unites advantages of the OLI with those of modern program with graphical surface.

So the NLI can calculate planetary orbits and evaluate the results in many different ways that

seem to be useful in the possible fields of applications like predicting the orbit of asteroids or

stability analysis of exoplanetary systems. This Lie-Integrator will certainly find its place as a

useful program in numerical calculations for celestial mechanics.

 67

REFERENCES

i
A. Hanslmeier and R. Dvorak (1983): Numerical integration with Lie-series; A&A 132

ii
 online: http://turnbull.mcs.st-and.ac.uk/history/Mathematicians/Lie.html (10. 9. 2007)

iii
 R. Dvorak, F. Freistetter and J. Kurths (2005): Chaos and Stability in Planetary Systems; Springer (Berlin)

iv
 W. Gröbner: Die Lie-Reihen und ihre Anwendung(1967): VEB Deutscher Verlag der Wissenschaften (Berlin)

v
 online: http://en.wikipedia.org/wiki/Hill_sphere (10. 9. 2007)

vi
 C. Beaugé, N. Callegari, S. Ferraz-Mello and T.A. Michtchenko (2005): Resonances and stability of extra-

solar planetary systems; Cambridge University Press

vii
 J. Schneider (2004);: The search for life outside the solar system; CNRS (Paris)

