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ABSTRACT 

 

The aim of this work is to develop a modern and more flexible Lie-Integrator based on the 

work of A. Hanslmeier and R. Dvorak from 1983. The program shall be able to calculate the 

movement of objects in n-body systems with Newtonian gravitational interaction. 

Furthermore the user shall be able to evaluate the results of these calculations with the same 

program. In addition to that there shall be a function to do series of calculations with slightly 

different initial conditions automatically. The result of these considerations is a modern 

numerical integrator with a graphical surface and an easy handling. The integrator is 

programmed in Delphi6 and uses OpenGL for 3D-applications.  

 

KEY WORDS: Lie-Integrator, celestial mechanics, n-body systems, computer program, 

numerical integration, Delphi6. 
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1. INTRODUCTION 

 

Lie-Integration is a method to solve numerically systems of differential equations by using 

lie-series. For this problem we are considering the Newtonian movement equations for objects 

with mutual gravitational interactions. The hard work to apply the Lie-Integration method on 

these equations and to develop an algorithm which can be processed into a computer program 

has already be done by A. Hanslmeier and R. Dvorak
i
 in 1983 and I am very thankful being 

allowed to use the source code of their program. I translated the source code of their program 

(to which I’ll be referring from now as “Old Lie-Integrator (OLI)”) form Fortran77 into 

Delphi6 and improved it a little by using new features of my new programming language. The 

New Lie-Integrator (as I’ll be referring to my program from now) uses a graphical interface 

with a clearly labelled input mask to get the input data instead of input files like the OLI, but 

you can also save and load your input data to and from files. In addition to the simple 

calculation of entered parameters of one system, the program can perform a sequence of 

calculation of systems with slightly different initial conditions, so that you can “scan” through 

the values of the orbit elements of one object. Moreover the NLI possesses a special tool to 

calculate artificial radial velocity curves of exoplanetary systems. This program feature can 

help to discover a deviation from the Keplerian fits which are usually used to find the orbit 

elements of multiple exoplanetary systems, but which won’t be valid if there are strong 

dynamical interactions between the planets. The most important improvement of the NLI 

compared to OLI is that you won’t need another program for most kinds of scientific 

evaluations of your data. The NLI is equipped with a couple of tools which are capable to 

produce the needed diagrams. You can get tables, line diagrams, stability maps and even 3D-

animitions just by opening the right window in the program. Summing up we can say that the 

NLI is a modern program which unifies the high speed and accuracy of the OLI and the user 

friendliness of up-to-date professional software.  
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2. LIE-INTEGRATION 

 

2.1 Sophus Lieii 

 

Sophus Lie was a Norwegian mathematician, who was born on the17
th

 December 1842 in 

Nordfjordeid. He tried to study several different sciences (e.g. astronomy) but finally got to 

mathematics. There he published his first paper in 1869. Only a few years later he developed 

the Lie-Integration as a method to solve differential equations in the years 1871 and 1872. 

Furthermore Sophus Lie is known because of several works about geometry, transformation 

groups and commutator algebra. During his life he taught in Leipzig and Oslo. Personally 

Sophus Lie didn’t seem to be the easiest man to get around with. It is told that he had a 

tendency to depressions and got in quarrel with his colloquies. In spite of this he was a very 

familiar human. Sophus Lie died on the 18
th

 February 1899 in Oslo.  

 

 

Fig. 1: Sophus Lie 
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2.2 Lie-Integration as method to solve differential equations 

 

First of all it is to mention that the Lie-Integration, despite the fact it’s still an integration 

method, has very little to do with the common Riemann-Integration. We start by defining a 

Lie-Operator:  
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This operator is a linear differential operator, where the functions θ1 to θn may depend on all 

parameters z1 to zn as long as the function can be expanded into a converging power series. 

The operator can be applied on a function f, which must fulfil the same criterion. A multiple 

application of the Lie-Operator on the function f can be written like this: 
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In the next step we will define Lie-Series L(z,t) by using the Lie-Operator: 
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By expanding the e-function into a Taylor-series we get: 
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Note that the Lie-Series can also depend on more than one parameter z like the Lie-Operator.  

 

Now we are ready to have a look at systems of differential equations. The Lie-Integration 

method only works on systems of first order differential equations. All systems with higher 
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orders have to be reduced to a system of first order differential equations. Let’s have a closer 

look at a system of first order differential equations: 
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with following initial conditions: 
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These initial conditions are for time t=0, but you can modify them easily all other times. Now 

we are going to use the Lie-Operator in following form:  
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The solution of the differential equation system (6) with the initial condition (7) can be 

written as:  
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You can prove this relation by using the Vertauschungssatz of Lie-series and differentiating. 

A detailed proof can be found in “Chaos and Stability in Planetary Systems” by R. Dvorak, F. 

Freistetter and J. Kurths
iii

. It is more useful for numerical applications to expand the right-

hand side of relation (9) into a Taylor-series: 
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2.3 Application of the Lie-Integration method on the 2-body and 

the n-body problem 

 

This work has already been done by A. Hanslmeier and R. Dvorak when developing the OLI 

in 1983. I’ll briefly summarize their paper which is based on the work of W. Gröbner
iv

 from 

1967.  

 

First we will do a short review of the 2-body problem. The equations of motion for this 

problem written in relative coordinates are: 
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Due to the fact that the Lie-Integration method only works on systems of first order 

differential equations, we must separate the system (11) into: 
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Now we are able to define the Kepler-Operator: 
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By introducing new variables (14) we can also write the Kepler-Operator in a different form 

(15). The solution of this problem can be calculated by using the Kepler-Operator as Lie-

Operator and solving it with the Lie-Integration method: 
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In the next step you must find a recurrence formula for the multiple application of the Kepler-

Operator (Lie-Operator) on these variables (initial conditions). I am skipping this long 

procedure by referring to the paper mentioned above and show you the final result:  
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Note that you can get nearly the same formula for ηi because of: 
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Now we can use the methods we learned by solving the 2-body problem to find a numerical 

solution for general n-body problem. Therefore we start again with the equation of motion: 
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We reduce this system of differential equations with the same substitution as we have done in 

the 2-body problem. After defining a Lie-Operator for the 3-body problem, introducing new 

variables and finding a recurrence formula for 3-body case, it is comparably simple to 

generalize it for the n-body-problem: 
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All these thoughts and calculations lead to a formalism which enables us to evaluate all terms 

(Ti(k,a)) of the Lie-series. The OLI was developed based on these mathematics and of course 

the NLI uses exactly the same algorithms to calculate the movement of planets and asteroids. 

 

2.4 Advantages of the Lie-Integration method 

 

The Lie-Integration method holds a couple of very useful advantages. It has a very high 

accuracy depending on the number of Lie-terms calculated. Furthermore it can operate with a 

large step length which makes it very fast. In addition to that the step length is flexible and 

can be adapted to the situation. So in case of problems of celestial dynamics it can calculate 

very fast when the planets are far away but it can also handle close encounters with a high 

accuracy by temporarily reducing the step length without loosing much calculation time.  
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3. PROGRAMMING LANGUAGE “DELPHI6” 

 

3.1 Programming environment 

 

The Borland Delphi 6.0 Personal Edition with Service Pack 2 has been used to develop the 

NLI. The programming editor has a visual surface to create program windows and other 

common tools and components by drawing (drag and drop) them up. Furthermore there is also 

a text editor to write the source code to control these components. A Compiler and a useful 

help are included too.  

 

 

Fig. 2: Delphi6 programming environment 
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3.2 Features of Delphi6 

 

First of all I’ve got to mention that programming language Delphi could also be called 

“Visual Pascal”, because the syntax is of Delphi is based on Pascal like Visual C++ is based 

on C. Delphi6 is equipped with some very useful features: There is for example a 80-bit 

floating point variable called “extended” which covers values from 3.6 10
-4951

 to 1.1 10
4932

. 

Delphi6 can also handle dynamic arrays. This is one of the most important improvements 

compared to its predecessors and I’ve used this feature very often for the NLI to define the 

dimension of an array on runtime. Furthermore Delphi6 translates the source code directly 

into Assembler and not like many other programming editors first into C and then into 

Assembler. This is very important for the runtime speed of programs and fastness is essential 

especially for the usage of our program. In addition to that Delphi6 uses elements of object 

orientated programming languages as well as elements for structured programming languages. 

You can’t say that Delphi can be classified as either the one or the other. This mixture gives 

you the opportunity to use the best features and elements of both types of programming 

languages. The graphical surface is very useful for developing user-friendly programs. Plenty 

of prefabricated components and libraries for all kinds of applications are another advantage 

of Delphi6. I’ve used some of them for the NLI, mainly for the graphical surface and the 3D-

animations.  
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3.3 Syntax 

 

I’ve already mentioned that the syntax strongly resembles Pascal. Now I am going more into 

detail by showing you an example source code in Fortran77 (the programming language of 

the OLI) and in Delphi6 of the same simple program. The following program (in both 

languages) can calculate prime numbers up to a certain number. I’ve chosen a very slow but 

simple algorithm for this showpiece program. 

 

In Fortran77 

 

integer a,i,e,max 

       

      print*,'höchste Zahl eingeben' 

      read*,max 

      open(unit=11,file='ergebnis.txt',status='unknown') 

      do 100 i=2,max 

      a=0 

      do 200 e=2,i-1 

      if (MOD(i,e)==0) then 

      a=a+1 

      end if 

200   continue 

      if (a==0) then 

      write(11,*) i 

      print*, i 

      end if 

100   continue 

      close(11) 

      stop 

      end 
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In Delphi6 

 

procedure TForm1.Button1Click(Sender: TObject); 

Var F:Textfile; 

    i,e,a:integer; 

begin 

assignfile(F,'ergebnis.txt'); 

rewrite(F); 

for i:=2 to spinedit1.Value do 

begin 

a:=0; 

for e:=2 to i-1 do 

begin 

if (i mod e)=0 

then 

inc(a); 

end; 

if a=0 

then 

begin 

writeln(F,inttostr(i)); 

listbox1.Items.Add(inttostr(i)); 

end; 

end; 

closefile(F); 

end; 

 

Some parts of the source code look similar, others don’t. Writing to a file in Fortran77 

consists of basically 3 commands:  

 

open(unit=number,file=’filename’,status=’unknown’)   C opens file 

write(number,*) variable   C writes a line 

close(number)   C closes file 

 

While in Delphi6 you’ve to use 4 commands: 
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assignfile(identifier,filename);   // opens file 

rewrite(identifier);   //sets file ready to write(overwrite) 

writeln(identifier,variable);   //writes a line 

closefile(identifier);   //closes file 

 

Let’s have a look at another example: a for-loop in Fortran77 must be written like this: 

 

do number variable=startvalue, stopvalue   C define and begin loop 

COMMANDOS   C commandos that are whished to be done in the loop 

number continue   C end loop 

 

The same code lines in Delphi6 have to look like this: 

 

for variable:=startvalue to stopvalue do   // define loop 

begin   // begin bracket 

COMMANDOS   // commandos that are whished to be done in the loop 

end;   // end bracket 

 

Let’s compare an If-Case in Fortran77: 

 

if (logical comparison) then   C make a comparison: if true then continue 

COMMANDOS   C commandos that are whished to be done in this case 

else   C if comparison is false then continue here 

COMMANDOS   C commandos that are whished to be done in this case 

end if   C comparison complete 

 

with one in Delphi6: 

 

if (logical comparison)   // C make a comparison 

then   // if comparison is true then continue 

begin   // begin bracket 

COMMANDOS   // commandos that are whished to be done in this case 

end   // end bracket 

else   // if comparison is false then continue here 
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begin   // begin bracket 

COMMANDOS   // commandos that are whished to be done in this case 

end;   // end bracket 

 

After these basic syntax elements I’ve to tell you some more differences between Delphi6 and 

Fortran77. Firstly variables must be declared at the beginning of a program or a procedure in 

Delphi6, while in Fortran77 they may be declared everywhere in the source code. 

Furthermore every code line has to be ended by a semicolon in Delphi6. This doesn’t exist in 

Fortran77. There are many more differences and characteristics of both programming 

languages, but to mention and explain them all would blast the volume of this paper. I hope 

this overview has given you a small insight into the syntax of Delphi6. I am closing this 

chapter with a comparison of the program surface of the prime number program above in 

Fortran77 and Delphi6. 

 

 

Fig. 3: the appearance of the running prime number program in Fortran77 
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Fig. 4: the appearance of the running prime number program in Delphi6 
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4. MODIFICATIONS 

 

In this part of the paper I will write about my modifications on the core program (the part that 

I’ve translated from the OLI). I will treat the program elements I’ve added to the original 

program in the next chapter. Due to the fact that the OLI all over all is a very efficient and 

well working program, I’ve avoided large changes in the mathematical functions. Most 

modification, I have done on the core program, were intended to make it more flexible. But I 

have also tried to improve the speed of the program by creating an option to turn off features 

which aren’t always needed for the calculations. The number of objects (massive and mass 

less) has been limited in the OLI. The only possibility to change this limit has been to edit an 

include file and recompile the program. This isn’t any longer necessary with the NLI, because 

of using dynamical arrays. In the NLI almost all parameters of the integrator are editable 

while running the program, even some parameters that couldn’t be changed in the OLI 

without editing the source code of the program. For example: To indicate that an object gets 

very instable you can use its eccentricity. Of course it’s not a perfect instability indicator, but 

this orbit parameters must increase up to greater or equal to1 to get an eject. Furthermore a 

high eccentricity also increases the probability of close encounters and that cause ejects too. 

Another argument to exclude high eccentric objects (as long as they are mass less) from 

calculations is that their extreme orbits decrease the step length of the integrator and slow it 

down. The limit of eccentricity in the OLI has been 0.5. This seems to be quite low, but 

simulations have shown that it is high enough (see Fig.5).  

 

 

Fig. 5: number of objects left after a long-time calculation of the restricted three-body-

problem; it shows little difference between the result of escape-time and emax of 0.5.  
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But with respect to the discovery of many exoplanets during the last decade I must admit that 

a fix limit of eccentricity of 0.5 is no longer reasonable. 20 years ago nobody was expecting 

that we will discover massive planets with an eccentricity greater than 0.5, but now there are 

several known planets with stable orbits and an eccentricity much greater than 0.5. These 

mostly very massive planets can force other objects in the systems on orbits with a 

comparable high eccentricity. 

 

 

Fig. 6: number of known exoplanets ordered by eccentricity.  

 

Increasing the limit up to a higher value isn’t very practicable either, because most solar 

systems have planets with lower eccentricity and this would only lengthen the calculation 

time for these systems. So I have chosen to make the maximal eccentricity editable. Now the 

user is able to adjust this criterion for his cases. Other situations when you are allowed to 

exclude objects from the calculation are close-encounters. Within a certain distance from the 

planet a passing asteroid will either be captured or ejected. To investigate this case we have to 

ask ourselves the question, when the gravitational influence of a planet dominates the one of 

its host star. The Hill-Radius
v
 has been defined for this situation:  

 

(21)   3.(1 )
3

Hill

m
R a e

M
≈ −  
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In formula (21) the variable “a” is the semi-major axis of the smaller body (planet) and “e” its 

eccentricity. “M” stands for the mass of the larger body (star) and the variable “m” is the mass 

of the smaller body. Note that the formula for the Hill Radius can’t be derived rigorously. 

Despite it works fine as long as the mass of the third object is much less than the other two 

masses. For my calculations I’ve replaced the term a.(1-e) by the distance star-planet. The 

arguments to exclude object that are closer than a certain (in the NLI editable) fraction of the 

Hill-Radius to a planet are the same as for the eccentricity criterion, but here I would put a 

little more focus on the step length argument. In addition to these modifications I’ve also 

created the possibility to turn off or on several features of the integrator. For example you 

may disable that it puts out the heliocentric coordinates into a file, when you know that you 

only need the orbit elements, because writing to the hard disc takes some time. Furthermore 

I’ve made some minor improvements in the source code to speed the integrator up a little. In 

spite of all these modifications the largest part of the core source code of OLI is still the same 

in NLI. 
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5. PROGRAM ELEMENTS 

 

In this chapter I will give an overview of the functions and the how-to-use of the program 

elements I’ve added to the integrator. Each of the following sub-chapters will treat a window 

of the program.  

 

5.1 Main menu 

 

The main menu is the part of the program which controls the integrator. It consists of five 

submenus, the large “calculate”-button and a menu bar.  

 

Fig. 7: the main menu of the Lie-Integrator 

 

There are 8 “text edits” and 3 “radio buttons” in the submenu “objects”. With the “radio 

buttons” you can select if you would like to enter orbit elements, heliocentric coordinates or 
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barycentric coordinates. The labels of the “text edits” will change automatically. I’m going to 

use following abbreviations in the program for the orbit elements (and masses): 

 

abbreviation full name 

a semi-major axis 

e eccentricity 

i inclination 

ω argument of perihelion 

Ω longitude of ascending node 

M mean anomaly 

m mass 

Tab. 1: abbreviations of orbit elements 

 

You can enter the orbit elements or the coordinates and the mass and name of the object you 

intend to add into the text edits. After this you only have to click the button “add” and your 

object will be displayed in one of the two “list boxes”. The upper “list box” is appointed to 

massive objects and in the other one only mass less objects will be displayed. Furthermore 

you can remove objects for these “list boxes” by clicking on them and using the button 

“remove” afterwards. In a similar way you can change your input with the button “edit”. After 

clicking “edit” the data of the selected object will be displayed in the “text edits” and you can 

confirm your changes by clicking the “ok”-button. Another submenu is called “main 

settings”. Into the first “text edit” you can enter the length of the calculation. On the right-

hand side of it there are 3 “radio buttons” to select the unit of the calculation length. You can 

chose between days, years and million years. The next “text edit” is labelled with “print step”. 

The entered value sets the intervals in days in which the NLI makes a printout into a file. 

Beside this “text edit” you can find a “checkbox” named “automatic”. If you enable it by 

clicking the integrator will make a printout after every internal step. Note that this step length 

is variable. Into the next “text edit” you can enter the number of Lie-terms used for the 

calculation. The default setting of 12 has proved as most efficient for the OLI. On the right-

hand side of this “text edit” there is another one to enter the so called “Log EPS”, which 

corresponds to accuracy. An average value for this is the default setting of -11. A setting for 

low accuracy would be -9 and one for a still reasonable high accuracy would be -13. The next 

2 “text edits” are made to put in the minimal step length. Right beside it you can find a 

“checkbox” and with it, it’s possible to enable or disable an abort-function if the step length 
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gets to small. Another “text edit” is dedicated to the parameter “swsum”. The next “text edit” 

is labelled as “emax”. There you can enter the maximal allowed eccentricity for mass less 

bodies. If the eccentricity gets greater than this value, the object will be excluded from the 

calculation. Furthermore you can find another “text edit” below to set the Hill radius criterion. 

On the right hand-side of these “text edits” there are 3 “checkboxes” and one “spin edit”. 

With these controls you can enable and disable printout files for orbit elements, coordinates or 

backup. The “spin edit” gives you the opportunity to set the interval for backups. On the 

bottom of this submenu there is a button to reset all parameters in this submenu to default. 

Now we will focus on the third submenu, which is called “save path for results”. The first 

“text edit” in this submenu has been made to enter the path, where you intend to save your 

results. You can change it either by entering the path directly or by using the button below 

which opens a common Windows “save dialog”. In this submenu there are three more “text 

edits” where you can enter the filenames for orbit elements, coordinates and backups. The 

next submenu is labelled as “state of calculation”. You can find two “gauges” there. The first 

one is labelled as “recent calculation” and it indicates the progress of the recent calculation. 

The other gauge only shows overall progress if there is a queue of calculations (in the scan 

mode). The large button labelled with “calculate” is self-explaining. On the top of the main 

menu window there is a menu bar, where you can start all the other program features.  

 

5.2 Help system 

 

The second program window we are threatening is the help system. You can start the help in 

the program with the menu entry “Help” in the menu bar. The short manual is based on this 

part of the paper and explains how to use the program. You can start it with the common short 

cut “F1”. Beside this there are two more windows you can start from the help menu: the first 

one is called “Report bugs”. It gives you a short description how to report a bug you have 

found in the program to me, so that I can fix it. The other one is titled with “About” and only 

contains version number and copyright. Let’s focus on the short manual, which can be a real 

help if you know how to handle it.  
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Fig. 8: the short manual for the Lie-Integrator 

 

The short manual looks quite simple and it really is. There is one “list box” on the left, a 

“memo field” on the right and below these two objects I have placed a button called “close” to 

close this window. By clicking on a topic in the “list box” the corresponding help text will 

appear in the “memo field”. As already mentioned, these help texts are based on this chapter 

of this paper. This part of the program works in a very simple way. The titles of the topics in 

“list box” are as well the filename (without extension) of the corresponding text file with the 

help text. So it just loads the right file by using the title you’ve clicked on.  

 

5.3 Scans 

 

For many situations it’s very important to investigate several possibilities which are only 

slightly different. For these cases I’ve developed a scan procedure for the Lie-Integrator, 

which can be controlled by the scan window.  

 



 24 

 

Fig. 9: the Scans window – scan mode: “mass less testbody” 

 

The scan menu consists of 3 submenus and 3 buttons. In the first submenu which is labelled 

“scan mode” you are able to choose between 3 different kinds of scans: “mass less testbody”, 

“massive planet” and “inclination of system”. In the first mode there will be a mass less 

testbody added to system with variable initial conditions and in the second mode it’s a 

massive planet or even star. The third mode is completely different from the other two. You 

can select the inclination of a system of exoplanets, so that the masses of the planets are 

multiplied with a factor depending on the angle of view. This feature treats a very up-to-date 

problem with systems of exoplanets discovered by radial velocity method. The next submenu 

is labelled “path” and contains a “text edit”, where the save path of the result files is 

displayed. You can change it with the button below, which is labelled “location for save 

files”. You find two more buttons below this one. The first one is labelled “calculate” and 

starts the calculation of the scan sequence while the other button is called “close”. The last 

submenu changes its appearance due to the chosen scan mode.  

 

 

Fig. 10: submenu from scans window – scan mode: “inclination of system” 
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In the scan mode “inclination of system” this submenu consist of only two “text edits” and 

one “spin edit” (see Fig.10). Into the first “text edit” you must enter the lowest angle you 

intend to scan and into the second “text edit” the highest angle for your scan. The “spin edit” 

has been made to select the resolution: how many runs shall be made? Note that only angles 

greater than 0° and less than or equal to 90° are reasonable. An angle of 90° means that you 

see the system edge on and the measured minimal masses are the real masses of the planets.  

 

 

Fig. 11: submenu from scans window – scan mode: “massive planet” 

 

If you select the mode „massive planet“, the submenu will change completely (Fig.11). Now 

it consists of 7 “checkboxes”, 14 “text edits”, 7 “spin edits” and 2 buttons. Each “checkbox” 

enables or disables a variable orbit element or variable mass for the additional planet. In the 

first “text edit” right of a “checkbox” you must enter the value you intend to start your scan 

with. In the next one you shall write the upper border of your scan area in this parameter. If 

the “checkbox” isn’t checked, the value in the first “text edit” will be the initial value of this 

orbit element for all runs. Finally on the right edge of this submenu there are the “spin edits”. 

With these controls you change the resolution (number of runs with different initial values for 

this orbit element) of the scan. On the bottom of this submenu you can find two buttons. The 

first one is called “resonances” and opens the resonances window, while the other, which is 

labelled “habitable zone”, displays the habitable zone window. The functions of these 

windows will be explained in the next two sub chapters. If you select the scan mode “mass 

less testbody”, you will see a very similar submenu (Fig.9). There is only one difference: 
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Instead of the possibility to select the mass of the object, which is of course in this case zero, 

you will find a “spin edit” that is entitled with “objects per run” and a “checkbox” with “all” 

written on it. Because mass less objects don’t influence each other by gravity you can 

calculate more than one object with different initial values per run. This “text edit” gives you 

the opportunity to choose how many you intend to calculate per run. The OLI has shown that 

the optimal number of objects in total per run is between 10 and 20. But you can also use the 

“checkbox” “all” and calculate all mass less testbodies in only one run.  

 

Finally we are going to have a look on the orbit elements. They are all listed (with 

abbreviations) in Table 1, but what are they? The semi-major axis and the eccentricity are 

defining the shape of the orbit ellipse. You can calculate the eccentricity from the two semi 

axis of the ellipse: 
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Fig. 12: an orbit ellipse viewed from above 

 

The other 4 orbit elements are all angles and define the alignment of the ellipse in 3-

dimensional space and the position of the planet on it. The inclination defines the gradient of 

the ellipse to a fix plane in space. The longitude of the ascending node refers to a fix point 

(direction) on this plane and the cutting point of the orbit plan. The argument of perihelion 

counts the angle from this cutting point to the point where the ellipse gets closest to one of its 

focal points. Now we have defined the alignment of the ellipse in space. Finally we have the 
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angle from the perihelion to the recent position of the planet. It is called the true anomaly (v) 

and can be transformed into the mean anomaly (M) with these formulas:  
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Fig. 13: an orbit ellipse in 3-dimensional space 

 

5.4 Resonances 

 

Investigating resonances is a very common work in Astrodynamics. Resonances are important 

in our own solar system (e.g. main asteroid belt and Kuiper belt) as well as in other 

multipanetary systems (in Classes Ia and Ib due to the classification of S. Ferraz-Mello
vi

). 

Because I intend to make the NLI as user-friendly as possible, I have created a feature which 

calculates resonances for scientific users so that they don’t have to do side-calculations.  
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Fig. 14: the resonances window 

 

The window only contains 2 “spin edits”, 2 “text edits”, 3 buttons and a couple of “labels”. 

With the 2 “spin edits” you are able to choose the resonance ratio. Furthermore you can enter 

the semi-major axis of the object you want to have a resonance with into the first “text edit”. 

The last “text edit” is designated to the width of resonance. In most cases it isn’t reasonable to 

investigate the exact resonance only. So you have to define a small area around it to see the 

structure of the resonance. The first button is titled “pre-calculate” and when clicking it 

calculates the resonance but only makes an output into the bottommost “label”. The button 

“accept” also calculates the resonance but closes the window and enters the result into the 

scan window. You can simply close this window with the last button.  

 

5.5 Habitable Zone 

 

The most interesting area around other stars is the habitable zone. Only within a certain 

distance from the host star a planet can support life (with a couple of other fitting parameters) 

comparable to ours. I’ve created this window with the same motivation as the window above.  
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Fig. 15: the habitable zone window 

 

The habitable zone window contains 6 “text edits”, 3 buttons and a couple of “labels”. The 

first “text edit” is reserved for the surface temperature of the host star in Kelvin. Into the next 

one you have to enter the radius of the star in solar radii. Below this “text edit” there is 

another one to enter the albedo of the planet. The fourth “text edit” is labelled “atmosphere 

factor” where you have to enter a constant (see formula (22)) which describes the heat storing 

of the planets atmosphere. Below this “text edit” you can find two more of them. Into the first 

one you have to enter the minimal average surface temperature of the planet and into the other 

one the maximal average surface temperature of the planet. All values in these “text edits” 

(except the bottommost two) are the standard values of Earth and Sun. The average surface 

temperature of is about 288K. The 3 buttons below fulfil the same functions as in the previous 

window. Let’s have a closer look how the habitable zone is calculated. In this program I’m 

using a formula from J. Schneider
vii

, which I’ve slightly altered: 
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The formula I’ve found doesn’t contain the term with Fatm (atmosphere factor) and leads for a 

non-zero albedo to completely wrong results for Earth. So I’ve added the atmosphere factor to 

this formula to get for a planetary temperature (Tp) of 288K a distance (a) of 1AU. An 

atmosphere factor of zero describes a planet without atmosphere but at a value of 0.81 it 
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simulates an Earth-like atmosphere. The other variables in this formula are radius of Sun 

(R⊙), radius of the host star (R*) and the surface temperature of the host star (T*). 

 

5.6 Tables  

 

Up to now I’ve only described features of the program which helps you to calculate problems, 

but what are we going to do with the results? For this reason the NLI contains several 

different program elements to evaluate the results of previous calculations. The first and most 

simple of them is the table window. Here you can extracts the data you need from the result 

files and get it displayed in tables, which you can save for further external evaluation. In 

addition to that there is also a function, which can find extreme values in the results. Let’s 

have a look on this window: 
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Fig. 16: the table window 

 

You can see 2 submenus and each of them contains 2 “list box” and 4 buttons labelled with 

different arrows. Furthermore there is a long “label” and a “spin edit” below them. You can 

also find 6 buttons and a huge “memo field” on this window. The first submenu has been 

developed to select the orbit elements and parameters that you would like to display. By 

clicking on one you can move it into the “chosen” “list box” or back by using one of the 4 

buttons. Their meaning is explained here in Table 2 and this convention is also used in other 

parts of the program: 
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symbol meaning 

> move the selected element into the “list box” on the right-hand side 

>> move all elements into the “list box” on the right-hand side 

< move the selected element into the “list box” on the left-hand side 

<< move all elements into the “list box” on the left-hand side 

Tab. 2: arrow symbols and their meaning 

 

The other submenu works the same way. The only difference is that you have to choose the 

objects for which you intend to output their elements. The long “label” below the first 

submenu contains the path of the file you have selected with the first button that is labelled 

“select result file”. The “spin edit on the right edge of this window has been placed there to 

choose the number of right-of-comma-positions you intend to be shown in the table. By 

clicking the second button in the row the program will display a table due to the selected 

parameters above in the “memo field”. The next two buttons will put out a labelled list of 

extreme values of the orbit elements into the “memo field”. It is possible to save the content 

of the “memo field” to a text file with the button that is entitled with “save”. Finally the 

button “close window” does that what is written on it. 

 

5.7 Diagrams 

 

Results are usually display in diagrams and so I’ve decided to equip the program with a tool 

that can create line diagrams out of a result file. You can chose if you like to open a single 

“normal file” or a “scan file”. This tool creates a saveable diagram with labelled axis. 
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Fig. 17: the diagrams window- normal file mode 

 

The diagram window consists of a submenu that changes its appearance due to the selected 

result file type. In addition to that you can find 6 buttons and a “paint box”. You can select a 

normal result file with the button “select normal file”, but you can also work with a scan file 

by clicking the button “select scan file”. The third button opens the colour palette window. 

You are able to draw a diagram by clicking the next button that is labelled “draw diagram”. 

The button “save graphic” saves the diagram in the “paint box” as a bitmap. To close this 

window you can use the button “close”. Let’s have a view on the submenu in case you’ve 

chosen a normal file. It consists of 2 “list boxes”, 4 “text edits” and a “checkbox” (Fig.17). 

The first “list box” contains all orbit elements and you select the one intend to display. In the 

other “list box” all objects are listed. You can select as many of them as you like by marking 

them by clicking. The first 2 “text boxes” are made to enter the borders of the visible y-axis. 

The displayed time interval can be selected by entering values into the other 2 “text boxes”. 

Finally the “checkbox” that is labelled “show minor ticks” enables additional tick marks in 

the diagram. 
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Fig. 18: the diagrams window- scan file mode 

 

On the other hand you can select to evaluate a scan file. The submenu (see Fig.18) looks quite 

different and contains 3 “combo boxes”, 1 “list box”, 5 “text edits”, 1 “check box” and a 

button labelled “stable ele.”, which opens the window stable elements. You can select the 

parameters displayed on the y-axis with the first 2 “combo boxes” and the “list box”. The first 

“combo box” contains the so called “feature” of an orbit element. These features are listed in 

table 3 here: 

 

maximum 

minimum 

time until maximum 

time until minimum 

time until greater than a limit 

final value 

Tab. 3: features of orbit elements that can be selected 

 

Of course the same list of features is used other parts of the program. The next “combo box” 

gives you the opportunity to select the orbit element and with the “list box” you can chose the 

objects. You can define the borders of the visible area of the y-axis with the first 2 “text 

edits”. The third “text edit” is only needed in case you have selected the feature “time until 

greater than a limit”. In this case you can enter the limit value into it. For the x-axis you must 
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select a parameter that has been variable during the scan. This can be done with the third 

“combo box” and the border between the diagram line is displayed can be defined with the 

last 2 “text edits”. Finally the “checkbox” remains to be explained, but it has the same 

function as in the case you’ve selected a normal file.  

 

5.8 Stable elements 

 

The program must know when it draws a diagram or stability map from a scan-file on what 

values the non-variable parameters are held. For this problem I’ve created the stable elements 

window, where you can select these values. 

 

 

Fig. 19: the stable elements window 

 

This window contains 7 labelled “spin edits” and a button to close this window again. With 

these “spin edits” you can set the counter position for the elements that have been variable 

during the scan, but are not displayed on an axis in the diagram. Reasonable values are from 

one up to the resolution of the orbit element. In case you’ve entered a not allowed value it will 

either take 1 or the highest reasonable value for this element.  
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5.9 Colour palette 

 

It doesn’t only look boring to have a monochromatic diagram; no it can even cause problems, 

because you will mix up the graphs if they cross over. So I’ve programmed a Colour palette to 

give the user the opportunity to select the colours of the individual curves. Furthermore I use 

this window in other parts of the program, where it’s reasonable that the user can select 

colours. The colour palette is used to colour a stability map or the objects in the 3D-

animation.  

 

 

Fig. 20: the colour palette 

 

This window consists of a “list box”, 5 buttons and a “shape”. The last object is usually used 

to display simple geometric figures, like in this case a rectangle. But it can also be coloured in 

any available 32bit colour and a “shape” can also react on an “on click-event”. By clicking 

into the “list box” the “shape” will get the selected colour. When you click on the button “add 

colour” a simple colour dialog as known from programs like “Paint” will show up and you are 

able to choose a colour which will be added to the “list box”. You can remove a colour from 

the “list box” by first clicking on the colour you want to get rid of and then clicking on the 

button which is labelled “remove colour”. With the buttons “move up” and “move down” you 

can sort the “list box”. The final button “close” closes the window so that you can continue 

with your work. Note that all colours are display in the “list box” in their hexadecimal RGB 

(red-green-blue) code (or better BGR as you can read in Fig.20).  
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5.10 Stability maps 

 

A stability map is a very common way to display astrodynamical data of a solar system, 

because it contains as much information as a three dimensional diagram. On both axis you can 

display different variable orbit elements from a scan of a system while another parameter can 

be displayed at each point in a different colour.  

 

 

Fig. 21: the stability map window 

 

This window contains of 4 submenus, a “paint box” and 4 buttons. The first of these buttons 

is labelled “select file” and with it you can of a result file from a scan. The next button draws 

a stability map with the parameter selected in the submenus to the “paint box”. You can save 

it to a bitmap with the third button that is labelled “save stability map”. The last button closes 

this window. Let’s have a look on the submenus. The first submenu is entitled with “x-axis” 

and contains a “combo box” and two “text edits”. With the “combo box” you can select a 

variable orbit element you want to display on the axis. The borders of the displayed area can 

be set with the two “text edits”. The next submenu is entitled “y-axis” and is completely equal 

to the previous. Colouration is the title of the submenu below these two and it consists of 3 

“combo boxes”, 3 “text edits” and one image. The 3 “combo boxes” are similar to those in 

diagram window in the “scan file” mode. You can select a feature of an orbit element (also 
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selectable) of an object. The only difference is that you have a “combo box” instead of a “list 

box” like in the diagram window. The limit value for the feature “time until greater than a 

limit” can be entered into the uppermost “text edit”. The other “text edits” are placed there to 

enter the borders of colouration. Finally there is the image on the bottom of this submenu. It is 

coloured in the same way the stability map is going to be coloured. By clicking on it, the 

window colouration will open where you can edit the colouration. The last submenu is 

labelled “settings” and contains 3 “combo boxes” and a button that opens the stable elements 

window. The first “combo box” will show additional tick marks on the stability map if it’s 

enabled. To show a legend for the colouration you have to click the second “combo box”. The 

last “combo box” enables an interpolation mode for the stability map. In Fig.21 you can see 

the same stability map as in Fig.22, where the interpolation mode is disabled. The resolution 

is 5 times 5. The first one seems to be more elegant but mimics an illusory accuracy. 

 

 

Fig. 22: a stability map from the NLI without interpolation 
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5.11 Colouration 

 

I’ve developed a possibility to edit the colouration of a stability map. There are 4 different 

colouration modes, so that almost every user should be satisfied.  

 

 

Fig. 23: the colouration window 

 

There is a “radio button” and a submenu for each of the 4 colouration modes. In addition to 

that you can find a button to close this window on its bottom. By clicking on one of the “radio 

buttons” you can select the colouration mode. The first colouration mode is called “spectral 

mode” and you can chose between 2 sub-modes which are the same just mirrored. The title 

refers to the appearance of the mode, because it looks like a spectrum (see Fig.21). In the 

submenu for the second mode, that is called “two colour” you can find 2 “shapes”. By 

clicking on them you can change their colour with a colour dialog. The colouration makes an 

RGB-interpolation between those two colours (see Fig.24).  
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Fig. 24: colouration mode – two colour 

 

The next mode is called “RGB mode” and its submenu contains 2 “radio buttons”, 3 “check 

boxes”, 6 “text edits” and another submenu that consists of 6 “radio buttons”. With the first 2 

“radio buttons” you can select the sub-mode: the first mode “mixed” is similar to the “two 

colour” mode, but the other mode draws a sequence of RGB colours with different intensity. 

You can enable and disable single colours (red, green or blue) with the 3 “check boxes”. With 

the “radio buttons” in the other submenu you can change the order of the sequence. In the 6 

“text edits” you can enter the intervals for the main colours. You can see an example of this 

mode here (Fig.25):  

 

 

Fig. 25: colouration mode – RGB mode – sequencal  

 

The last colouration mode is quiet simple. It loads a colour sequence from the colour palette, 

we have already treated above. There is an example down here in Fig.26. 

 

 

Fig. 26: colouration mode –colour sequence  

 

5.12 3D-animations 

 

The most impressing feature of the NLI is the ability to show a 3D-animation of the planets 

movement. But to get a proper animation you will have to do a small set-up which can be 

done in this window. 
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Fig. 27: the 3D-animation window 

 

The 3D-animation window consists of 5 submenus, 3 buttons and one “check box”, that 

enables the users to decide if he wants to see the animation in full screen mode or not. With 

the first submenu that is labelled “mode” you can select the mode. It will be done 

automatically when you select a file with the first of the 3 buttons. The button on the right 

edge closes the window, while by clicking on the button in the middle the animation will start. 

There is another submenu that is labelled “time interval” and contains 3 “text edits”. Into the 

first 2 of them you can enter the time interval you want to get displayed in the animation. The 

other “text edit” has been placed there to enter the conversion factor for real time and 

simulation time. The submenu below is titled with “use rotating coordinate system” and 

consists of a “check box” and a “combo box”. With the “check box” you can enable this 

feature and with the “combo box” you can select the object which shall be stable in the 

rotating coordinate system. This feature is very useful to display horseshoe orbits, Trojans and 

orbits of exchange planets. The submenu in upper right part is called “colouration”. In it there 
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are 3 “radio buttons”, 3 “shapes”, 2 “spin edits” and a button to edit the colour palette. You 

can choose between the standard colouration, a colouration for object types and the colour 

palette by clicking on the “radio buttons”. The first mode uses a predefined list of colours that 

resembles the colours of the object in our system sorted by semi-major axis. The second mode 

paints objects up to a certain index with one colour and then up to another index with another 

colour and the rest with a third colour. You can set the border indexes with the two “spin 

edits”. The three colours can be change by clicking on the “shapes”. Finally the last mode 

uses the colours from the colour palette. The last submenu is labelled with “visible objects” 

and in it there are 3 “list boxes”, 8 buttons and one “text edit”. After you have selected a file a 

list of all objects of it will appear in the most left “list box”. Those objects you intend to see in 

the animation must be moved into the second “list box” with the 4 arrow buttons. The third 

“list box” contains the radii of the visible objects in Jupiter Radii. You can add a radius by 

entering a value into the “text edit” and clicking the “add”-button. With the next button you 

can remove an item from the radii-“list box”. Because the uppermost radius in the “list box” is 

assorted with the first object in the “list box” that is labelled with “visible objects” I’ve 

created two more buttons to change the order of the radii list. Note that the default value in the 

“text edit” is the radius of our Sun in Jupiter Radii.  

 

5.13 3D-window 

 

After you’ve clicked on the “start”-button in the 3D-animation window the 3D-window will 

appear. The 3D-animation here are mainly calculated on the computer’s graphic card and uses 

OpenGL, because it’s better implemented into the program language and there are many units 

(would be called classes in C) online. These facts make it comparable easy to develop a 3D-

surface in Delphi. I’m using following units that are not part of the standard package of 

Delphi6: GL, GLu, GLext, TGA2, CgWindow, CgUtils, CgTypes, CgGeometry, CgLight, 

DotWindow, DotUtils, DotVideo, Glut. Despite so many different units I made the 3D 

animation quiet simple: all objects (stars, planets and asteroids) are spheres (or points). You 

can “fly” around by pressing some keys on the keyboard and I’ve only implemented one light 

source on the position of the host star. I’ve also developed a possibility to capture a video 

from the screen while watching the simulation, because else this feature would be just fun. 
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Fig. 28: the 3D-window 

 

This window has a height of 600 pixels and a width of 800 pixels, but 100 pixels in height are 

lost for the control panel. So we have a resolution for the 3D-graphic of 800x500 pixels. Let’s 

have a look on the control panel first: It contains 4 submenus. The first one is titled “camera” 

and contains 3 “labels”. The coordinates (in AU and the origin is the host star) are written on 

the uppermost “label”. Furthermore you can see the angle of view in the second “label” and 

the zoom factor in the last one. The second submenu is labelled “imaging” and contains 3 

“labels” too. The first one gives you the recent frame rate in frames per second. The next 

“label” contains the number ob visible objects and the last one shows if the background stars 

are enabled. The next submenu, which also contains 3 “labels”, is called “time”. The 

uppermost “label” gives us the recent time in the simulation. The “label” below shows us the 

time interval for this simulation and on the last one you can read the recent conversion rate of 

real time and simulation time. The last submenu is different and it contains one button and 

two “labels”. If you click on the button a menu will appear that asks you where to save the 

video. After this another menu will become visible and there you can make some settings for 

the .avi-video. Then the program will start recording at the current FPS-rate visible in the 
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right “label” and the number of frames that has been recorded yet are written into the other 

“label”. The process can be stopped by clicking on the button again. Although I’ve explained 

all visible features of this window one questions remains: “How can I fly around there?” This 

is controlled by the keyboard and the mouse. You can move at two different speeds in 6 

directions and rotate around 3 angles. Furthermore you can control the time and recording of 

the video also by keyboard. The next table will give you a list of the shortcuts in this window: 

 

key / mouse move action 

Click right mouse button 

and move up/down 

moves view angle up and down 

Click right mouse button 

and move left/right 

moves view angle left and right 

Q rotates counter-clockwise 

W rotates clockwise 

arrow up moves camera forwards 

arrow down moves camera backwards 

arrow left moves camera left 

arrow right moves camera right 

page up moves camera upwards 

page down moves camera downwards 

Shift goes to higher speed while pressed 

H stops time 

R reverses time 

F increases time rate (faster) 

S decreases time rate (slower) 

B enables/disables background stars 

I zooms in 

O zooms out 

M starts/stops capturing a movie 

X increases FPS-rate for movie 

Y decreases FPS-rate for movie 

Esc closes window 

Tab. 4: shortcuts for the 3D-window 
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5.14 Exoplanets - Calculations 

 

As mentioned before a Keplerian fit to determine the orbit elements is not always valid. So 

I’ve decided a feature to check its validity by calculating an artificial radial velocity curve for 

exoplanetary systems. You just enter the parameters of the system you intend to investigate 

into the main menu and open this window.  

 

 

Fig. 29: the exoplanets – calculations window 

 

This window is small and simple: into the first submenu you have to enter the resolution of 

your calculation. The program looks for the planet with the smallest semi-major axis and 

divides its orbit period by the value you have entered into this “text edit”. The next submenu 

is designated for the duration of this calculation. I’ve decided to place this “text edit” here to 

avoid that the user makes the mistake to start this calculation at such a high resolution over a 

million years. This would simply take to much time. The last submenu contains a “text edit” 

and a button that is labelled “change path”. Similar to the scan you have to select a path for 

this calculation which can be done by clicking on this button and the selected path will appear 

in the “text edit”. Finally there are two more buttons on the bottommost edge of this window. 

The first one starts a calculation and the other one closes this window.  
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5.15 Exoplanets - Evaluation 

 

Now we can evaluate the results of the previous calculation. For this I’ve developed another 

window, where you can investigate the exoplanetary system in two different ways. 

 

 

Fig. 30: the exoplanets – evaluation window 

 

This window contains of 2 submenus, a “spin edit” to set the number of visible right-of-

comma positions for the data that will be display in the “memo field” in the lower left corner, 

a “paint box” and 6 buttons. The first of these buttons has been placed there to open the result 

file of an exoplanet calculation. The other two buttons in the first row start the two evaluation 

procedures. In the second row the first button closes this window. The next one which is 

labelled “save data” saves the content of the “memo field” to a text file. The last button saves 

the diagram from the “paint box” to a bitmap by clicking. The first submenu is titled “radial-

velocity curve – settings” and contains 6 “text edits” and a “check box”. You can define the 

time interval that will be displayed with the first two “text edits”. The next two “text edit” 

give the values for the borders of the y-axis (radial velocity). The inclination angle which 

influences the amplitude of the curve has to be entered into the “text edit”. Into the last “text 
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edit” there can be the angle of the fix point entered. Finally if you click on the “check box” 

there will be an output of into the “memo field” as well as to the “paint box”. The other 

submenu is titled “variation of orbit elements – settings”. It consists of 2 “list boxes”. The 

first one lists up the first three orbit elements, while the other contains a list of objects in this 

system. By starting the evaluation the program will search maxima and minima due to the 

selection and output the variation of the orbit elements into the “memo field”.  

 

5.16 Load, Save and Samples 

 

In this sub-chapter I’ll write about some features of the program, that haven’t been mentioned 

yet. In the menu bar in the main menu there is also an items titled with “file”. It contains 4 

other items: New, Open, Save and Close. The first item deletes everything that has been 

entered into the main menu and resets to default values. The second item gives the user the 

opportunity to save the data from the main menu to a file, while the next one loads it from a 

file. In the order where you can find the .exe of the Lie-Integrator you can also find an order 

called samples. I have prepared some sample systems (e.g.: two body problem, restricted 3-

body problem, our solar system …) there and you can load them by clicking on Open. The 

last item of course closes the program. There are also some shortcuts for the menu bar. I’ve 

decided to keep to the standards and use F1 for Help, Ctrl+N for New, Ctrl+S for Save, 

Ctrl+O for Open and finally Ctrl+F4 for Close. 
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6.  CODE SAMPLES 

 

6.1 The main procedure 

 

This procedure is always called when the Lie-Integrator has to calculate the movements of 

planets and other objects. This can be in the main menu, in the scan window or in the 

exoplanet calculations window. Other important procedures are called in this procedure. 

Furthermore all parameters from the graphical surface are loaded into the program. In 

addition to that constants are initialized and coefficients are calculated. Moreover the printout 

is managed and the main lie series calculation procedure is called here too.  

 

procedure TForm1.Lieberechnen;   // declaration of the procedure 

var genauig:integer;   // declaration of local variables 

begin   // begins procedure 

genauig:=strtoint(edit14.Text);   // load accuracy from surface 

assignfile(Elemente,pfad+edit19.text);   // opens file for orbit elements 

rewrite(Elemente);   // sets file to write mode 

assignfile(Koordinaten,pfad+edit20.text);   // opens file for coordinates 

rewrite(Koordinaten);   // sets file to write mode 

autoprt:=checkbox1.checked;   // gets a variable from surface 

t:=0.0172020989500;   // sets constant: Gaussian gravitational constant 

param;   // loads all parameters from surface and initializes arrays 

sicher:=0;   // sets counter for backup file to zero 

firstrun:=true;   // sets variable to initial value 

steptosmall:=false;   // sets variable to initial value 

swprt:=0;   // sets variable to initial value 

swak:=0;   // sets variable to initial value 

swakpr:=0;   // sets variable to initial value 

konst;   // calls procedure konst to initialize constants 

koeff;   // calls procedure koeff to calculate coefficients 

if (ini=0)   // checks if input is given in orbit elements 

then   // then 

trnsko(2,NK);   // transforms orbit elements into heliocentric coordinates 



 49 

if (ini<2)   // checks if input is given in orbit elements(that have already been 

transformed) or heliocentric coordinates 

then   // then 

heba;   // transforms into barycentric coordinates 

mindis;   // calculates minimal distance between objects and checks Hill-criterion 

print1;   // writes file header and initial values 

repeat   // starts “repeat until” loop 

lie_int;   // calls „Lie integration“ procedure 

mindis;   // calculates minimal distance between objects and checks Hill-criterion 

swsum:=swsum+swak;   // adds current step length to total time count 

swprt:=swprt+swak;   //  adds current step length to print step count 

Gauge1.Progress:=round(100*swsum/stp);   // shows progress in % 

if autoprt=true   // checks if automatic print step is selected 

then   // then 

prt:=swprt;   // stets print step to recent step length 

if roundto(swprt,genauig)=roundto(prt,genauig)   // checks if print step is equal 

within a certain accuracy to recent print count 

then   // then 

begin   // begins bracket 

print2;   // prints positions of planets into file 

swprt:=0;   // stets print count back to zero 

end;   // ends bracket 

until (swsum>=stp) or (steptosmall=true);   // stops repeat loop if calculation is 

complete or step length too small 

if swprt<>0   // checks if print count is unequal zero 

then   // then 

Print2;   // prints positions of planets into file 

closefile(Elemente);   // closes file for orbit elements 

closefile(Koordinaten);   // closes file for coordinates 

end;   // ends procedure 
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6.2 Lie Integration procedure 

 

This procedure is really the core of the Lie-Integrator. The lie series are calculated here.  

 

Procedure Tform1.Lie_Int;   // declaration of the procedure 

var maxddx,maxddt,AB:extended;   // declaration of local variables of floating 

point type 

norckw,nmak,k,l,i,i1,i2,j,j1,j2,ny:integer;   // declaration of local variables of 

integer type 

abbruch:boolean;   // declaration of local variables of boolean type 

begin   // begins procedure 

if firstrun=true   // checks if the procedure is running the first time 

then   // then 

begin   // begin bracket 

phi:=0;   // sets variable to initial value 

sig:=0;   // sets variable to initial value 

x1:=0;   // sets variable to initial value 

x2:=0;   // sets variable to initial value 

x3:=0;   // sets variable to initial value 

firstrun:=false;   // sets variable firstrun to false 

end;   // end bracket 

swmin:=999;   // sets variable to initial value 

swmax:=0;   // sets variable to initial value 

maxddx:=0;   // sets variable to initial value 

maxddt:=0;   // sets variable to initial value 

norckw:=0;   // sets variable to initial value 

for k:=1 to nm do   // starts “for loop” 

for l:=k+1 to nk do   // starts “for loop” 

begin   // begins bracket 

R2[l].spalte[k]:=-1/(RCUR[l].spalte[k]*RCUR[l].spalte[k]);   // calculates R2 

array 

DPHI[0].zeile[l].spalte[k]:=1/RCUR[l].spalte[k]*R2[l].spalte[k];   // calculates 

DPHI array 

ignore[k].spalte[l]:=ignore[l].spalte[k];   // makes ignore array symmetric 
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diffx1[0].zeile[l].spalte[k]:=DXB1[l].spalte[k];   // copies values into diffx1 array 

diffx2[0].zeile[l].spalte[k]:=DXB2[l].spalte[k];   // copies values into diffx2 array 

diffx3[0].zeile[l].spalte[k]:=DXB3[l].spalte[k];   // copies values into diffx3 array 

end;   // ends bracket 

for k:=1 to nk do   // starts “for loop” 

begin   // begins bracket 

DDX1[1].spalte[k]:=VB1[k];   // copies values into DDX1 array 

DDX2[1].spalte[k]:=VB2[k];   // copies values into DDX2 array 

DDX3[1].spalte[k]:=VB3[k];   // copies values into DDX3 array 

end;   // ends bracket 

for i:=0 to n2 do   // starts “for loop” 

begin   // begins bracket 

i1:=i+1;   // defines variable i1 

i2:=i+2;   // defines variable i2 

j1:=i1 div 2;   // defines variable j1 

j2:=i1-j1;   // defines variable j2 

for k:=1 to nm do   // starts “for loop” 

begin   // begins bracket 

nmak:=nm;   // copies value into variable nmak 

if (k<=norckw)   // checks if variable norckw is greater than loop variable k 

then   // then 

nmak:=norckw;   // sets variable  

abbruch:=false;   // sets variable 

for l:=k+1 to nk do   // starts “for loop” 

begin   // begins bracket 

if (ignore[l].spalte[k]=true)   // checks if bodies are mass less 

then   // then 

abbruch:=true;   // sets variable 

if abbruch=false   // checks if bodies aren’t mass less 

then   // then 

begin   // begins bracket 

if (i<>n2)   // checks loops variable i 

then   // then 

begin   // begins bracket 
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diffx1[i1].zeile[l].spalte[k]:=ddx1[i1].spalte[l]-ddx1[i1].spalte[k];   // calculates 

difference 

diffx2[i1].zeile[l].spalte[k]:=ddx2[i1].spalte[l]-ddx2[i1].spalte[k];   // calculates 

difference 

diffx3[i1].zeile[l].spalte[k]:=ddx3[i1].spalte[l]-ddx3[i1].spalte[k];   // calculates 

difference 

for j:=0 to j1 do   // starts “for loop” 

begin   // begins bracket 

sig:=sig+KO2[j].spalte[i]*(diffx1[j1-j].zeile[l].spalte[k]* 

diffx1[j2+j].zeile[l].spalte[k]+diffx2[j1-j].zeile[l].spalte[k]* 

diffx2[j2+j].zeile[l].spalte[k]+diffx3[j1-j].zeile[l].spalte[k]* 

diffx3[j2+j].zeile[l].spalte[k]);   // calculates sig 

end;   // ends bracket 

Dsig[i].zeile[l].spalte[k]:=sig;   // gives value to Dsig array 

for j:=0 to i do   // starts “for loop” 

phi:=phi+KO1[j].spalte[i]*Dphi[i-j].zeile[l].spalte[k]* 

dsig[j].zeile[l].spalte[k];   // calculates phi 

dphi[i1].zeile[l].spalte[k]:=R2[l].spalte[k]*phi;   // calculates dphi array 

end;   // ends bracket 

for j:=0 to i do   // starts “for loop” 

begin   // begins bracket 

AB:=KO[j].spalte[i]*dphi[j].zeile[l].spalte[k];   // calculates AB 

x1:=x1-AB*diffx1[i-j].zeile[l].spalte[k];   // calculates x1 

x2:=x2-AB*diffx2[i-j].zeile[l].spalte[k];   // calculates x2 

x3:=x3-AB*diffx3[i-j].zeile[l].spalte[k];   // calculates x3 

end;   // ends bracket 

DX1[k].spalte[l]:=-x1;   // copies value to DX1 array 

DX2[k].spalte[l]:=-x2;   // copies value to DX2 array 

DX3[k].spalte[l]:=-x3;   // copies value to DX3 array 

DX1[l].spalte[k]:=x1;   // copies value to DX1 array 

DX2[l].spalte[k]:=x2;   // copies value to DX2 array 

DX3[l].spalte[k]:=x3;   // copies value to DX3 array 

sig:=0;   // resets variable sig 

phi:=0;   // resets variable phi 

x1:=0;   // resets variable x1 
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x2:=0;   // resets variable x2 

x3:=0;   // resets variable x3 

end;   // ends bracket 

end;   // ends bracket 

abbruch:=false;   // sets variable 

for l:=1 to nmak do   // starts “for loop” 

begin   // begins bracket 

if (ignore[l].spalte[k]=true)   // checks if objects are mass less 

then   // then 

abbruch:=true;   // sets variable 

if abbruch=false   // checks if bodies aren’t mass less 

then   // then 

begin   // begins bracket 

x1:=x1+m[l]*dx1[l].spalte[k];   // calculates x1 

x2:=x2+m[l]*dx2[l].spalte[k];   // calculates x2 

x3:=x3+m[l]*dx3[l].spalte[k];   // calculates x3 

end;   // ends bracket 

end;   // ends bracket 

DDX1[i2].spalte[k]:=x1;   // copies value to DDX1 array 

DDX2[i2].spalte[k]:=x2;   // copies value to DDX2 array 

DDX3[i2].spalte[k]:=x3;   // copies value to DDX3 array 

x1:=0;   // resets variable x1 

x2:=0;   // resets variable x2 

x3:=0;   // resets variable x3 

end;   // ends bracket 

for k:=nm+1 to nk do   // starts “for loop” 

begin   // begins bracket 

for l:=1 to nm do   // starts “for loop” 

begin   // begins bracket 

x1:=x1+m[l]*dx1[l].spalte[k];   // calculates x1 

x2:=x2+m[l]*dx2[l].spalte[k];   // calculates x2 

x3:=x3+m[l]*dx3[l].spalte[k];   // calculates x3 

end;   // ends bracket 

DDX1[i2].spalte[k]:=x1;   // copies value to DDX1 array 

DDX2[i2].spalte[k]:=x2;   // copies value to DDX2 array 
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DDX3[i2].spalte[k]:=x3;   // copies value to DDX3 array 

x1:=0;   // resets variable x1 

x2:=0;   // resets variable x2 

x3:=0;   // resets variable x3 

end;   // ends bracket 

for k:=1 to nk do   // starts “for loop” 

begin   // begins bracket 

maxddx:=max(maxddx,max(abs(ddx1[i2].spalte[k]), 

max(abs(ddx2[i2].spalte[k]),abs(ddx3[i2].spalte[k]))));   // finds the largest 

DDX1 and copies it into maxddx 

if ((maxddx-maxddt)>=0)   // checks if maxddx is greater than or equal to 

maxddt 

then   // then 

NY:=I1;   // sets variable 

maxddt:=maxddx;   // sets variable 

end;   // ends bracket 

end;   // ends bracket 

SW:=Power((EPS*qfac[NY]/Maxddx),(1/NY));   // calculates step length 

SWAK:=SW/T;   // converts step length into the correct units 

if (SWAK<SWMINI)   // checks if step length is too small 

then   // then 

begin   // begins bracket 

SWAK:=SWMINI;   // sets step length to minimal step length 

if checkbox5.checked=true   // checks if program shall abort at a too small step 

length 

then   // then 

begin   // begins bracket 

steptosmall:=true;   // sets abort condition to true 

MessageDlg('Step small than minimal step! - Program aborted.', mtInformation, 

[mbOk], 0);   // output info message 

end;   // ends bracket 

end;   // ends bracket 

SWMIN:=min(SWMIN,SWAK);   // redefine SWMIN 

SWMAX:=max(SWMAX,SWAK);   // redefine SWMAX 

if (swsum+swak>stp)   // checks if calculation have reached the end 
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then   // then 

begin   // begins bracket 

swakpr:=swak;   // secures value of swak 

swak:=stp-swsum;   // redefines swak 

sw:=t*swak;   // redefines sw 

end;   // ends bracket 

if (swprt+swak>prt)   // checks if there will be a printout 

then   // then 

begin   // begins bracket 

swakpr:=swak;   // secures value of swak 

swak:=prt-swprt;   // redefines swak 

sw:=t*swak;   // redefines sw 

end;   // ends bracket 

fac1;   // calls procedure fac1 

for k:=1 to nk do   // starts “for loop” 

for j:=1 to n-1 do   // starts “for loop” 

begin   // begins bracket 

XB1[k]:=XB1[k]+TT[j]*DDX1[j].spalte[k];   // calculate new barycentric 

coordinates 

XB2[k]:=XB2[k]+TT[j]*DDX2[j].spalte[k];   // calculate new barycentric 

coordinates 

XB3[k]:=XB3[k]+TT[j]*DDX3[j].spalte[k];   // calculate new barycentric 

coordinates 

VB1[k]:=VB1[k]+TT[j]*DDX1[j+1].spalte[k];   // calculate new barycentric 

velocities 

VB2[k]:=VB2[k]+TT[j]*DDX2[j+1].spalte[k];   // calculate new barycentric 

velocities 

VB3[k]:=VB3[k]+TT[j]*DDX3[j+1].spalte[k];   // calculate new barycentric 

velocities 

end;   // ends bracket 

end;   // ends procedure 
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6.3 Coefficient calculation procedure  

 

The coefficients of the Lie series are calculated in this procedure. It will be only called once at 

the beginning of the calculation. This procedure is an essential part of the Lie-Integrator. 

 

procedure Tform1.Koeff;   // declaration of the procedure 

var i,j,i1,j1:integer;   // declaration of local variables 

begin   // begins procedure 

for i:=0 to n-2 do   // starts “for loop” 

begin   // begins bracket 

KO[0].spalte[i]:=1;   // sets KO array to initial value 

KO[i].spalte[i]:=1;   // sets KO array to initial value 

end;   // ends brackets 

for i:=2 to n-2 do   // starts “for loop” 

for j:=1 to i-1 do   // starts “for loop” 

KO[j].spalte[i]:=KO[j-1].spalte[i-1]+KO[j].spalte[i-1];   // calculates KO array 

for i:=0 to n-3 do   // starts “for loop” 

KO1[i].spalte[i]:=3;   // sets values to KO1 array 

for i:=0 to n-4 do   // starts “for loop” 

KO1[0].spalte[i+1]:=KO1[0].spalte[i]+2;   // copies values into KO1 array 

for i:=2 to n-3 do   // starts “for loop” 

for j:=1 to i-1 do   // starts “for loop” 

KO1[j].spalte[i]:=KO1[j-1].spalte[i-1]+KO1[j].spalte[i-1];   // calculates KO1 

array 

i1:=0;   // sets i1 to initial value 

j1:=-1;   // sets j1 to initial value 

i:=0;   // sets i to initial value 

while i<=n-3 do   // starts “while loop” 

begin   // begins bracket 

i1:=i1+1;   // increments i1 

j1:=j1+2;   // increases J1 by 2 

for j:=0 to i1-1 do   // starts “for loop” 

CO2[i].spalte[j]:=KO[i1+j].spalte[j1];   // copies value into CO2 array 

i:=i+2;   // increases i by 2 
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end;   // ends brackets 

j1:=-1;   // sets j1 to initial value 

i:=1;   // sets i to initial value 

while i<=n-3 do   // starts “while loop” 

begin   // begins bracket 

j1:=j1+1;   // starts “for loop” 

CO2[i].spalte[0]:=KO[j1+1].spalte[i];   // copies values into CO2 array 

CO2[i].spalte[j1+1]:=KO[i].spalte[i];   // copies values into CO2 array 

for j:=1 to j1 do   // starts “for loop” 

CO2[i].spalte[j]:=KO[j1+1+j].spalte[i+1];   // copies values into CO2 array 

i:=i+2;   // increases i by 2 

end;   // ends bracket 

for j:=0 to n-3 do   // starts “for loop” 

for i:=0 to ((n-2)div 2) do   // starts “for loop” 

KO2[i].spalte[j]:=CO2[j].spalte[i];   // copies values into KO2 array 

end;   // ends procedure 

 

6.4 OpenGL Paint procedure 

 

One also very interesting procedure is the one where the program draws the 3D-graphic on the 

window using OpenGL. There the planets are painted and the background stars. Furthermore 

the light is set and the calculation procedure to get the positions of all objects is called here 

too. 

 

procedure TForm17.FormPaint(Sender: TObject);   // declaration of the 

procedure 

const    att: array [0..2] of Single = (0.25, 0, 1/60);   // declaration of local 

constants 

var i:integer;   // declaration of local variables of integer type 

Q : PGLUQuadric;   // declaration of local variables of PGLUQuadric type 

begin   // begins procedures 

if lauf=true   // checks if simulations shall run 

then   // then 

begin   // begins bracket 
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rechneposi;   // calculates new positions of objects 

glClear(GL_COLOR_BUFFER_BIT);   // clears the screen 

glMatrixMode(GL_MODELVIEW);   // sets matrix mode 

glLoadIdentity;   // loads some GL setup 

glRotatef(-cam.pitch, 1, 0, 0);   // rotates camera 

glRotatef(-cam.yaw, 0, 1, 0);   // rotates camera 

glRotatef(-cam.rot, 0, 0, 1);   // rotates camera 

glTranslatef(-cam.pos.x, -cam.pos.y, -cam.pos.z);   // moves camera 

glLightfv(GL_LIGHT0, GL_POSITION, @LPOS);   // puts light to origin (star) 

glLightfv(GL_LIGHT1, GL_POSITION, @LPOS);   // puts light to origin (star) 

glLightfv(GL_LIGHT2, GL_POSITION, @LPOS);   // puts light to origin (star) 

glLightfv(GL_LIGHT3, GL_POSITION, @LPOS);   // puts light to origin (star) 

glLightfv(GL_LIGHT4, GL_POSITION, @LPOS);   // puts light to origin (star) 

glLightfv(GL_LIGHT5, GL_POSITION, @LPOS);   // puts light to origin (star) 

glenable(GL_CULL_FACE);   // enables a feature to save drawing time 

glCullFace(GL_BACK);   // doesn’t draw backside of objects 

Q := gluNewQuadric;   // declaration of variable Q  

gluQuadricDrawStyle(Q, GLU_FILL);   // sets draw style to solid 

glPushMatrix();   // prepares painting of objects 

glTranslatef(0, 0, 0);   // goes to origin 

glPointsize(1);   // sets points size  

glPointParameterfvEXT(GL_DISTANCE_ATTENUATION_EXT, @att);   // sets some 

point parameters 

glPointParameterfEXT(GL_POINT_FADE_THRESHOLD_SIZE_EXT, 1);   // sets 

some point parameters 

if bgstars=true   // checks if background stars shall be shown 

then   // then 

begin    //begins bracket 

glColor3f(1, 1, 1);   // sets colour of stars to white 

glBegin(GL_POINTS);   // begins to draw points 

for i:=0 to 255 do   // starts “for loop” 

glVertex3f(starx[i], stary[i], starz[i]);   // draws background stars 

glEnd;   // ends to draw points 

end;   // end bracket 

for i:=0 to nsichtbar-1 do   // starts “for loop” 
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begin   // begins bracket 

if (ausgabe[i].radius=0) or 

(ausgabe[i].d>(314159*ausgabe[i].radius*ausgabe[i].radius))   // checks if 

object should be drawn as a point 

then   // then 

begin   // begins bracket 

glColor3f(ausgabe[i].rot, ausgabe[i].gruen, ausgabe[i].blau);   // defines colour 

of points 

glBegin(GL_POINTS);   // begins to draw points 

glVertex3f(ausgabe[i].x, ausgabe[i].y, ausgabe[i].z);   // draws point at given 

position in ausgabe 

glEnd;   // ends to draw points 

end   // ends bracket 

else   // if object should be drawn as a sphere 

begin   // begins bracket 

glColor3f(ausgabe[i].rot, ausgabe[i].gruen, ausgabe[i].blau);   // defines colour 

of sphere 

glTranslatef(ausgabe[i].x,ausgabe[i].y,ausgabe[i].z);   // moves to position of 

the centre of the sphere given in ausgabe 

gluSphere(Q, ausgabe[i].radius, 16, 16);   // draws a sphere 

glTranslatef(-ausgabe[i].x,-ausgabe[i].y,-ausgabe[i].z);   // move back to origin 

end;   // ends bracket 

end;   // ends bracket 

glPopMatrix();   // resets matrix 

glFinish;   // ends drawing process 

gluDeleteQuadric(Q);   // destroys Q 

gldisable(GL_CULL_FACE);   // ends mode 

PageFlip;   // outputs to screen 

end;   // ends bracket 

if FRecording   // checks if recording is running 

then   // then 

begin   // begins bracket 

if FVidRec.Snap   // checks if recording works fine 

then   // then 
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Label11.Caption := Format('Captured %d frames', [FVidRec.NumFrames])   // 

outputs number of frames captured yet 

else   // if there are problems with recording 

Label11.Caption := 'Error: couldn''t capture frame!';   // output error message 

end;   // ends bracket 

end;   // ends procedure 
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7. POSSIBLE APPLICATIONS OF THE LIE-INTEGRATOR 

 

I see two main applications for this program: on the one hand numerical long-time integration 

of orbits of planets and asteroids in our own solar system or in other systems and on the other 

hand stability analysis of exoplanetary systems.  

 

7.1 Long-time numerical integration of orbits 

 

You are able to predict the movement of all planets in our solar system with the Lie-Integrator 

for millions of years. But you don’t need to calculate into the far future. By choosing a very 

small print step and calculation time you can calculate the orbit of asteroids moving through 

our solar system. Some of them could hit Earth and this impact could cause depending on the 

size of the object minor up to global catastrophes. It’s very important not only for academic 

scientific questions to be able to calculate the movement of objects in an interacting N-body 

system like our solar system. Another aspect is that the knowledge about the movement of our 

planets can give us information about the formation of our and other solar systems. Long-time 

numerical integration helps us to understand the structure of solar systems. Furthermore we 

can get also information about the stability of exoplanetary system (Fig.31) and investigate 

hypothetical arrangements of planets (Fig.32).  
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Fig. 31: eccentricity of planets in Gliese 581 for almost 40000 years (calculated with OLI) 
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Fig. 32: the semi-major axis of a hypothetical but instable system with exchange orbits for 

almost 100000 years (calculated with OLI) 
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7.2 Stability analysis of exoplanetary systems 

 

We know very little about exoplanetary systems for sure, because most of them have been 

detected with the radial-velocity method which doesn’t give any information about the 

inclination of this system to our direction of view. Furthermore most orbit elements of the 

planets that have been discovered yet are often having a quiet large uncertainty. To narrow the 

possible parameters of a detected exoplanetary system we have to exclude some possible 

values by calculating the systems future. Most stars are billions of years old and their planets 

are as well. We know that a system we are observing now must have been stable (but 

dynamical interaction is possible) for this long time and so we except that it will stay stable 

for the next millions of years. Else it would be a quiet big random that we are nor observing a 

system drifting apart after billions of years remaining stable. To find out which parameters are 

reasonable we just calculate the same system over and over again with slightly different initial 

values. It’s a simple try and error method. The results are often displayed in stability maps 

(Fig.33) and that’s the reason why I’ve included such a feature into the NLI. Another aspect is 

the search for additional stable objects in a known exoplanetary system. Due to the fact that 

most exoplanets that have been discovered yet have masses of about Jupiter or more you often 

search for “mass less” objects with stable orbits in such systems. The “mass less” object could 

be an Earth-like planet that has of course a neglectable mass compared to a star and one or 

more Jupiter mass planets. These stability analyses help us on our quest to find life outside 

our own solar system.  

 

 

Fig. 33: a stability map, you can see some resonances between 0.9 and 1.2 AU.  
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7.3 Other imaginable applications 

 

Beside these two main applications some more are possible. For example: you can create 

illustrative 3D-animations with one tool of the program. So an educational application is also 

possible, because you can show students the movement of planets and their interactions visual 

and not only in mathematics. Furthermore the exoplanet tool enables observing astronomers 

to check their results of the measurement of exoplanetary orbits. More over the high accuracy 

of the Lie-Integrator is also a possibility for Archeoastronomers to calculate the positions of 

the planets in our solar system thousands of years ago and compare them with archaeological 

discoveries. But they will have to do some side-calculations to project the orbits down to 

Earth. Maybe other fields of use will also open for the Lie-Integrator in the future.  
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8. CONCLUSION 

 

The Lie-Integration is a method to solve differential equations that has been developed by 

Sophus Lie more than hundred years ago. You use this method to solve systems of first order 

differential equations numerically and the Lie-Integrator applies it on the Newtonian 

Gravitation Equations for an interacting n-body system. The mathematics for this has been 

done by A. Hanslmeier and R. Dvorak in 1983 and on that foundation they have developed 

the first Lie-Integrator for problems of n-body celestial mechanics. Due to the great 

advantages of the Lie-Integration method like the flexible step length and the high accuracy I 

have decided to create a more modern version of this program. For this task I have chosen 

Delphi as my programming language. I tried to fully exploit the possibilities of Delphi and 

developed a program that is not only capable to calculate the orbits of planet. It possesses 

some very powerful evaluation functions. The NLI can create tables with the needed data out 

of the result file as well as displaying elegant and fully labelled diagrams. Furthermore it is 

able to draw colourful stability maps that contain as much information as 3-dimensional 

diagram about a solar system. A very impression element of the NLI is the 3D-animation. The 

evaluation module uses OpenGL based 3D graphics to display a real time simulation of a 

solar system that has been previously calculated. You can fly around in a 3-dimensional space 

and even record your views. With another tool of the program it’s possible to create artificial 

radial-velocity curves of exoplanetary systems. In addition to that you can find also a very 

useful program element in the Lie-Integrator to calculate scans in orbits elements. It gives the 

user the ability to perform a sequence of calculation with slightly different initial values. 

Furthermore the NLI contains a very useful help system and the content of the help files is 

based on chapter 5 of this paper. Series of test simulations have shown that this program 

works as well as the OLI. I’ve done many runs on the 2-body problem and the restricted 3-

body problem, which have shown the expected results. Of course I have tested all new 

features as well. Finally I’ve done a long-time run on our own solar system and it stayed 

stable over a million years as expected.  
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Fig. 34: Our solar system 

 

Beside the elements I’ve added, I’ve also done some modifications on the core code of Lie-

Integrator. The main modifications have made the instability criterion more flexible. You can 

now select the maximum eccentrity or the fraction of the Hill-radius when a mass less objects 

will be ejected. In addition to that I’ve also done some minor changes in the core code that 

increases the flexibility of program so that you can turn on or off not essential features. This 

program unites advantages of the OLI with those of modern program with graphical surface. 

So the NLI can calculate planetary orbits and evaluate the results in many different ways that 

seem to be useful in the possible fields of applications like predicting the orbit of asteroids or 

stability analysis of exoplanetary systems. This Lie-Integrator will certainly find its place as a 

useful program in numerical calculations for celestial mechanics.  
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